scholarly journals PIME: a package for discovery of novel differences among microbial communities

2019 ◽  
Author(s):  
Luiz Fernando W. Roesch ◽  
Priscila Thiago Dobbler ◽  
Victor Satler Pylro ◽  
Bryan Kolaczkowski ◽  
Jennifer C. Drew ◽  
...  

AbstractMassive sequencing of genetic markers, such as the 16S rRNA gene for prokaryotes, allows the comparative analysis of diversity and abundance of whole microbial communities. However, the data used for profiling microbial communities is usually low in signal and high in noise preventing the identification of real differences among treatments. PIME (Prevalence Interval for Microbiome Evaluation) fills this gap by removing those taxa that may be high in relative abundance in just a few samples but have a low prevalence overall. The reliability and robustness of PIME were compare against the existing methods and verified by a number of approaches using 16S rRNA independent datasets. To remove the noise, PIME filters microbial taxa not shared in a per treatment prevalence interval starting at 5% with increments of 5% at each filtering step. For each prevalence interval, hundreds of decision trees are calculated to predict the likelihood of detecting differences in treatments. The best prevalence-filtered dataset is user-selected by choosing the prevalence interval that keeps the majority of the 16S rRNA reads in the dataset and shows the lowest error rate. To obtain the likelihood of introducing bias while building prevalence-filtered datasets, an error detection step based in random permutations is also included. A reanalysis of previews published datasets with PIME uncovered previously missed microbial associations improving the ability to detect important organisms, which may be masked when only relative abundance is considered.

Forests ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 550 ◽  
Author(s):  
Huili Feng ◽  
Jiahuan Guo ◽  
Weifeng Wang ◽  
Xinzhang Song ◽  
Shuiqiang Yu

Understanding the composition and diversity of soil microorganisms that typically mediate the soil biogeochemical cycle is crucial for estimating greenhouse gas flux and mitigating global changes in plantation forests. Therefore, the objectives of this study were to investigate changes in diversity and relative abundance of bacteria and archaea with soil profiles and the potential factors influencing the vertical differentiation of microbial communities in a poplar plantation. We investigated soil bacterial and archaeal community compositions and diversities by 16S rRNA gene Illumina MiSeq sequencing at different depths of a poplar plantation forest in Chenwei forest farm, Sihong County, Jiangsu, China. More than 882,422 quality-filtered 16S rRNA gene sequences were obtained from 15 samples, corresponding to 34 classified phyla and 68 known classes. Ten major bacterial phyla and two archaeal phyla were found. The diversity of bacterial and archaeal communities decreased with depth of the plantation soil. Analysis of variance (ANOVA) of relative abundance of microbial communities exhibited that Nitrospirae, Verrucomicrobia, Latescibacteria, GAL15, SBR1093, and Euryarchaeota had significant differences at different depths. The transition zone of the community composition between the surface and subsurface occurred at 10–20 cm. Overall, our findings highlighted the importance of depth with regard to the complexity and diversity of microbial community composition in plantation forest soils.


2018 ◽  
Author(s):  
Sara F. Paver ◽  
Daniel J. Muratore ◽  
Ryan J. Newton ◽  
Maureen L. Coleman

AbstractMarine and freshwater microbial communities are phylogenetically distinct and transitions between habitat types are thought to be infrequent. We compared the phylogenetic diversity of marine and freshwater microorganisms and identified specific lineages exhibiting notably high or low similarity between marine and freshwater ecosystems using a meta-analysis of 16S rRNA gene tag-sequencing datasets. As expected, marine and freshwater microbial communities differed in the relative abundance of major phyla and contained habitat-specific lineages; at the same time, however, many shared taxa were observed in both environments. Betaproteobacteria and Alphaproteobacteria sequences had the highest similarity between marine and freshwater sample pairs. Gammaproteobacteria and Alphaproteobacteria contained the highest number of Minimum Entropy Decomposition nodes shared by marine and freshwater samples. Shared nodes included lineages of the abundant alphaproteobacterial group SAR11 that have not previously been reported in 16S rRNA gene surveys of freshwater lakes. Our results suggest that shared taxa are numerous, but tend to occur sporadically and at low relative abundance in one habitat type, leading to an underestimation of transition frequency between marine and freshwater habitats. Lineages with a high degree of shared taxa or habitat-specific diversification represent targets for genome-scale investigations into microbial adaptations and evolutionary innovations. Rare taxa with abundances near or below detection, including lineages that appear to have crossed the salty divide relatively recently, may have novel adaptations enabling them to exploit opportunities for niche expansion when environments are disturbed or conditions change.ImportanceThe distribution of microbial diversity across environments yields insight into processes that create and maintain this diversity as well as potential to infer how communities will respond to future environmental changes. We integrated datasets from dozens of freshwater lake and marine samples to compare diversity across open water habitats differing in salinity. Our novel combination of sequence-based approaches revealed phyla and proteobacterial classes inferred to include more or less recent transitions across habitat types as well as specific lineages that are shared by marine and freshwater environments at the level of 16S rRNA sequence types. Our findings contribute to understanding the ecological and evolutionary controls on microbial distributions, and open up new questions regarding the plasticity and adaptability of particular lineages.


mSystems ◽  
2018 ◽  
Vol 3 (6) ◽  
Author(s):  
Sara F. Paver ◽  
Daniel Muratore ◽  
Ryan J. Newton ◽  
Maureen L. Coleman

ABSTRACTMarine and freshwater microbial communities are phylogenetically distinct, and transitions between habitat types are thought to be infrequent. We compared the phylogenetic diversity of marine and freshwater microorganisms and identified specific lineages exhibiting notably high or low similarity between marine and freshwater ecosystems using a meta-analysis of 16S rRNA gene tag-sequencing data sets. As expected, marine and freshwater microbial communities differed in the relative abundance of major phyla and contained habitat-specific lineages. At the same time, and contrary to expectations, many shared taxa were observed in both habitats. Based on several metrics, we found thatGammaproteobacteria,Alphaproteobacteria,Bacteroidetes, andBetaproteobacteriacontained the highest number of closely related marine and freshwater sequences, suggesting comparatively recent habitat transitions in these groups. Using the abundant alphaproteobacterial group SAR11 as an example, we found evidence that new lineages, beyond the recognized LD12 clade, are detected in freshwater at low but reproducible abundances; this evidence extends beyond the 16S rRNA locus to core genes throughout the genome. Our results suggest that shared taxa are numerous, but tend to occur sporadically and at low relative abundance in one habitat type, leading to an underestimation of transition frequency between marine and freshwater habitats. Rare taxa with abundances near or below detection, including lineages that appear to have crossed the salty divide relatively recently, may possess adaptations enabling them to exploit opportunities for niche expansion when environments are disturbed or conditions change.IMPORTANCEThe distribution of microbial diversity across environments yields insight into processes that create and maintain this diversity as well as potential to infer how communities will respond to future environmental changes. We integrated data sets from dozens of freshwater lake and marine samples to compare diversity across open water habitats differing in salinity. Our novel combination of sequence-based approaches revealed lineages that likely experienced a recent transition across habitat types. These taxa are promising targets for studying physiological constraints on salinity tolerance. Our findings contribute to understanding the ecological and evolutionary controls on microbial distributions, and open up new questions regarding the plasticity and adaptability of particular lineages.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 446-446
Author(s):  
Arquimides Reyes ◽  
Margaret Weinroth ◽  
Cory Wolfe ◽  
Robert Delmore ◽  
Terry Engle ◽  
...  

Abstract The true etiology of liver abscesses is not well known. Therefore, the objective of this study was to characterize the microbial communities in the rumen lining, digesta, and rumen fluid from beef cattle consuming a high energy diet, using 16S rRNA gene amplicon sequencing. Twelve crossbred feedlot steers (450 ±10 kg; ~ 3.0 years of age) fitted with ruminal fistulas, consuming a high energy finishing diet (1.43 NEg, Mcal/kg DM) for 21 d were utilized in this experiment. Microbial DNA from three regions within the rumen [rumen lining (ventral/lateral), digesta (geometric center of the rumen), and rumen fluid] was extracted and the V4 region of the 16S rRNA gene was amplified and sequenced. Across all sample regions, bacterial sequences were classified into 34 phyla, 76 classes, 143 orders, and 254 families. Bacteroidetes and Firmicutes were the predominant phyla present across all samples. The relative abundance of Bacteroidetes detected in rumen fluid was lesser (P < 0.05) when compared to bacteria sampled from the rumen lining and digesta. In contrast, the relative abundance of Firmicutes were greater (P < 0.05) in rumen fluid and the rumen lining when compared to digesta samples. There are very few publications describing the complex community of the rumen microbiome. To our knowledge this is the first publication categorizing microbial populations in three distinct locations within the rumen using next generation sequencing in feedlot cattle.


2021 ◽  
Vol 12 ◽  
Author(s):  
Marc Crampon ◽  
Coralie Soulier ◽  
Pauline Sidoli ◽  
Jennifer Hellal ◽  
Catherine Joulian ◽  
...  

The demand for energy and chemicals is constantly growing, leading to an increase of the amounts of contaminants discharged to the environment. Among these, pharmaceutical molecules are frequently found in treated wastewater that is discharged into superficial waters. Indeed, wastewater treatment plants (WWTPs) are designed to remove organic pollution from urban effluents but are not specific, especially toward contaminants of emerging concern (CECs), which finally reach the natural environment. In this context, it is important to study the fate of micropollutants, especially in a soil aquifer treatment (SAT) context for water from WWTPs, and for the most persistent molecules such as benzodiazepines. In the present study, soils sampled in a reed bed frequently flooded by water from a WWTP were spiked with diazepam and oxazepam in microcosms, and their concentrations were monitored for 97 days. It appeared that the two molecules were completely degraded after 15 days of incubation. Samples were collected during the experiment in order to follow the dynamics of the microbial communities, based on 16S rRNA gene sequencing for Archaea and Bacteria, and ITS2 gene for Fungi. The evolution of diversity and of specific operating taxonomic units (OTUs) highlighted an impact of the addition of benzodiazepines, a rapid resilience of the fungal community and an evolution of the bacterial community. It appeared that OTUs from the Brevibacillus genus were more abundant at the beginning of the biodegradation process, for diazepam and oxazepam conditions. Additionally, Tax4Fun tool was applied to 16S rRNA gene sequencing data to infer on the evolution of specific metabolic functions during biodegradation. It finally appeared that the microbial community in soils frequently exposed to water from WWTP, potentially containing CECs such as diazepam and oxazepam, may be adapted to the degradation of persistent contaminants.


2008 ◽  
Vol 46 (2) ◽  
pp. 125-136 ◽  
Author(s):  
Young-Do Nam ◽  
Youlboong Sung ◽  
Ho-Won Chang ◽  
Seong Woon Roh ◽  
Kyoung-Ho Kim ◽  
...  

Author(s):  
Christen L. Grettenberger ◽  
Trinity L. Hamilton

Acid mine drainage (AMD) is a global problem in which iron sulfide minerals oxidize and generate acidic, metal-rich water. Bioremediation relies on understanding how microbial communities inhabiting an AMD site contribute to biogeochemical cycling. A number of studies have reported community composition in AMD sites from 16S rRNA gene amplicons but it remains difficult to link taxa to function, especially in the absence of closely related cultured species or those with published genomes. Unfortunately, there is a paucity of genomes and cultured taxa from AMD environments. Here, we report 29 novel metagenome assembled genomes from Cabin Branch, an AMD site in the Daniel Boone National Forest, KY, USA. The genomes span 11 bacterial phyla and one Archaea and include taxa that contribute to carbon, nitrogen, sulfur, and iron cycling. These data reveal overlooked taxa that contribute to carbon fixation in AMD sites as well as uncharacterized Fe(II)-oxidizing bacteria. These data provide additional context for 16S rRNA gene studies, add to our understanding of the taxa involved in biogeochemical cycling in AMD environments, and can inform bioremediation strategies. IMPORTANCE Bioremediating acid mine drainage requires understanding how microbial communities influence geochemical cycling of iron and sulfur and biologically important elements like carbon and nitrogen. Research in this area has provided an abundance of 16S rRNA gene amplicon data. However, linking these data to metabolisms is difficult because many AMD taxa are uncultured or lack published genomes. Here, we present metagenome assembled genomes from 29 novel AMD taxa and detail their metabolic potential. These data provide information on AMD taxa that could be important for bioremediation strategies including taxa that are involved in cycling iron, sulfur, carbon, and nitrogen.


2019 ◽  
Vol 85 (7) ◽  
Author(s):  
Alexander Burkert ◽  
Thomas A. Douglas ◽  
Mark P. Waldrop ◽  
Rachel Mackelprang

ABSTRACTPermafrost hosts a community of microorganisms that survive and reproduce for millennia despite extreme environmental conditions, such as water stress, subzero temperatures, high salinity, and low nutrient availability. Many studies focused on permafrost microbial community composition use DNA-based methods, such as metagenomics and 16S rRNA gene sequencing. However, these methods do not distinguish among active, dead, and dormant cells. This is of particular concern in ancient permafrost, where constant subzero temperatures preserve DNA from dead organisms and dormancy may be a common survival strategy. To circumvent this, we applied (i) LIVE/DEAD differential staining coupled with microscopy, (ii) endospore enrichment, and (iii) selective depletion of DNA from dead cells to permafrost microbial communities across a Pleistocene permafrost chronosequence (19,000, 27,000, and 33,000 years old). Cell counts and analysis of 16S rRNA gene amplicons from live, dead, and dormant cells revealed how communities differ between these pools, how they are influenced by soil physicochemical properties, and whether they change over geologic time. We found evidence that cells capable of forming endospores are not necessarily dormant and that members of the classBacilliwere more likely to form endospores in response to long-term stressors associated with permafrost environmental conditions than members of theClostridia, which were more likely to persist as vegetative cells in our older samples. We also found that removing exogenous “relic” DNA preserved within permafrost did not significantly alter microbial community composition. These results link the live, dead, and dormant microbial communities to physicochemical characteristics and provide insights into the survival of microbial communities in ancient permafrost.IMPORTANCEPermafrost soils store more than half of Earth’s soil carbon despite covering ∼15% of the land area (C. Tarnocai et al., Global Biogeochem Cycles 23:GB2023, 2009, https://doi.org/10.1029/2008GB003327). This permafrost carbon is rapidly degraded following a thaw (E. A. G. Schuur et al., Nature 520:171–179, 2015, https://doi.org/10.1038/nature14338). Understanding microbial communities in permafrost will contribute to the knowledge base necessary to understand the rates and forms of permafrost C and N cycling postthaw. Permafrost is also an analog for frozen extraterrestrial environments, and evidence of viable organisms in ancient permafrost is of interest to those searching for potential life on distant worlds. If we can identify strategies microbial communities utilize to survive in permafrost, it may yield insights into how life (if it exists) survives in frozen environments outside of Earth. Our work is significant because it contributes to an understanding of how microbial life adapts and survives in the extreme environmental conditions in permafrost terrains.


2004 ◽  
Vol 70 (8) ◽  
pp. 4911-4920 ◽  
Author(s):  
Nadia N. North ◽  
Sherry L. Dollhopf ◽  
Lainie Petrie ◽  
Jonathan D. Istok ◽  
David L. Balkwill ◽  
...  

ABSTRACT Previous studies have demonstrated that metal-reducing microorganisms can effectively promote the precipitation and removal of uranium from contaminated groundwater. Microbial communities were stimulated in the acidic subsurface by pH neutralization and addition of an electron donor to wells. In single-well push-pull tests at a number of treated sites, nitrate, Fe(III), and uranium were extensively reduced and electron donors (glucose, ethanol) were consumed. Examination of sediment chemistry in cores sampled immediately adjacent to treated wells 3.5 months after treatment revealed that sediment pH increased substantially (by 1 to 2 pH units) while nitrate was largely depleted. A large diversity of 16S rRNA gene sequences were retrieved from subsurface sediments, including species from the α, β, δ, and γ subdivisions of the class Proteobacteria, as well as low- and high-G+C gram-positive species. Following in situ biostimulation of microbial communities within contaminated sediments, sequences related to previously cultured metal-reducing δ-Proteobacteria increased from 5% to nearly 40% of the clone libraries. Quantitative PCR revealed that Geobacter-type 16S rRNA gene sequences increased in biostimulated sediments by 1 to 2 orders of magnitude at two of the four sites tested. Evidence from the quantitative PCR analysis corroborated information obtained from 16S rRNA gene clone libraries, indicating that members of the δ-Proteobacteria subdivision, including Anaeromyxobacter dehalogenans-related and Geobacter-related sequences, are important metal-reducing organisms in acidic subsurface sediments. This study provides the first cultivation-independent analysis of the change in metal-reducing microbial communities in subsurface sediments during an in situ bioremediation experiment.


Sign in / Sign up

Export Citation Format

Share Document