scholarly journals A nemertean excitatory peptide/CCHamide regulates ciliary swimming in the larvae of Lineus longissimus

2019 ◽  
Author(s):  
Daniel Thiel ◽  
Philipp Bauknecht ◽  
Gáspár Jékely ◽  
Andreas Hejnol

AbstractBackgroundThe trochozoan excitatory peptide (EP) and its ortholog, the arthropod CCHamide, are neuropeptides that are only investigated in very few animal species. Previous studies on different trochozoan species focused on their physiological effect in adult specimens, demonstrating a myo-excitatory effect, often on tissues of the digestive system. The function of EP in the planktonic larvae of trochozoans has not yet been studied.ResultsWe surveyed transcriptomes from species of various spiralian (Orthonectia, Nemertea, Brachiopoda, Entoprocta, Rotifera) and ecdysozoan taxa (Tardigrada, Onychophora, Priapulida, Loricifera, Nematomorpha) to investigate the evolution of EPs/CCHamides in protostomes. We found that the EPs of several pilidiophoran nemerteans show a characteristic difference in their C-terminus. Deorphanization of a pilidiophoran EP receptor showed, that the two isoforms of the nemertean Lineus longissimus EP activate a single receptor. We investigated the expression of EP in L. longissimus larvae and juveniles with customized antibodies and found that EP-positive nerves in larvae project from the apical organ to the ciliary band and that EP is expressed more broadly in juveniles in the neuropil and the prominent longitudinal nerve cords. While exposing juvenile L. longissimus specimens to synthetic excitatory peptides did not show any obvious effect, exposure of larvae to either of the two EPs increased the beat frequency of their locomotory cilia and shifted their vertical swimming distribution in a water column upwards.ConclusionOur results show that EP/CCHamide peptides are broadly conserved in protostomes. We show that the EP increases the ciliary beat frequency of L. longissimus larvae, which shifts their vertical distribution in a water column upwards. Endogenous EP may be released at the ciliary band from the projections of apical organ EP-positive neurons to regulate ciliary beating. A locomotory function of EP in L. longissimus larvae, compared to the association of EP/CCHamides with the digestive system in other animals suggests a dynamic integration of orthologous neuropeptides into different functions during evolution.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kyle S. Feldman ◽  
Eunwon Kim ◽  
Michael J. Czachowski ◽  
Yijen Wu ◽  
Cecilia W. Lo ◽  
...  

AbstractRespiratory mucociliary clearance (MCC) is a key defense mechanism that functions to entrap and transport inhaled pollutants, particulates, and pathogens away from the lungs. Previous work has identified a number of anesthetics to have cilia depressive effects in vitro. Wild-type C57BL/6 J mice received intra-tracheal installation of 99mTc-Sulfur colloid, and were imaged using a dual-modality SPECT/CT system at 0 and 6 h to measure baseline MCC (n = 8). Mice were challenged for one hour with inhalational 1.5% isoflurane, or intraperitoneal ketamine (100 mg/kg)/xylazine (20 mg/kg), ketamine (0.5 mg/kg)/dexmedetomidine (50 mg/kg), fentanyl (0.2 mg/kg)/1.5% isoflurane, propofol (120 mg/Kg), or fentanyl/midazolam/dexmedetomidine (0.025 mg/kg/2.5 mg/kg/0.25 mg/kg) prior to MCC assessment. The baseline MCC was 6.4%, and was significantly reduced to 3.7% (p = 0.04) and 3.0% (p = 0.01) by ketamine/xylazine and ketamine/dexmedetomidine challenge respectively. Importantly, combinations of drugs containing fentanyl, and propofol in isolation did not significantly depress MCC. Although no change in cilia length or percent ciliation was expected, we tried to correlate ex-vivo tracheal cilia ciliary beat frequency and cilia-generated flow velocities with MCC and found no correlation. Our results indicate that anesthetics containing ketamine (ketamine/xylazine and ketamine/dexmedetomidine) significantly depress MCC, while combinations containing fentanyl (fentanyl/isoflurane, fentanyl/midazolam/dexmedetomidine) and propofol do not. Our method for assessing MCC is reproducible and has utility for studying the effects of other drug combinations.


2002 ◽  
Vol 283 (2) ◽  
pp. L329-L335 ◽  
Author(s):  
Stephen T. Ballard ◽  
Laura Trout ◽  
Anil Mehta ◽  
Sarah K. Inglis

Because of its possible importance in cystic fibrosis (CF) pulmonary pathogenesis, the effect of anion and liquid secretion inhibitors on airway mucociliary transport was examined. When excised porcine tracheas were treated with ACh to induce gland liquid secretion, the rate of mucociliary transport was increased nearly threefold from 2.5 ± 0.5 to 6.8 ± 0.8 mm/min. Pretreatment with both bumetanide and dimethylamiloride (DMA), to respectively inhibit Cl− and HCO[Formula: see text]secretion, significantly reduced mucociliary transport in the presence of ACh by 92%. Pretreatment with the anion channel blocker 5-nitro-2-(3-phenylpropylamino)benzoic acid similarly reduced mucociliary transport in ACh-treated airways by 97%. These agents did not, however, reduce ciliary beat frequency. Luminal application of benzamil to block liquid absorption significantly attenuated the inhibitory effects of bumetanide and DMA on mucociliary transport. We conclude that anion and liquid secretion is essential for normal mucociliary transport in glandular airways. Because the CF transmembrane conductance regulator protein likely mediates Cl−, HCO[Formula: see text], and liquid secretion in normal glands, we speculate that impairment of gland liquid secretion significantly contributes to defective mucociliary transport in CF.


1995 ◽  
Vol 115 (3) ◽  
pp. 438-442 ◽  
Author(s):  
P. J. Schuil ◽  
M. Ten Berge ◽  
J. M. E. Van Gelder ◽  
K. Graamans ◽  
E. H. Huizing

2005 ◽  
Author(s):  
N. Bogdanovic ◽  
B. Krattiger ◽  
J. Ricka ◽  
M. Frenz

2014 ◽  
Vol 129 (S1) ◽  
pp. S45-S50 ◽  
Author(s):  
J H Kim ◽  
J Rimmer ◽  
N Mrad ◽  
S Ahmadzada ◽  
R J Harvey

AbstractObjective:This study investigated the effect of Betadine on ciliated human respiratory epithelial cells.Methods:Epithelial cells from human sinonasal mucosa were cultured at the air–liquid interface. The cultures were tested with Hanks' balanced salt solution containing 10 mM HEPES (control), 100 µM ATP (positive control), 5 per cent Betadine or 10 per cent Betadine (clinical dose). Ciliary beat frequency was analysed using a high-speed camera on a computer imaging system.Results:Undiluted 10 per cent Betadine (n = 6) decreased the proportion of actively beating cilia over 1 minute (p < 0.01). Ciliary beat frequency decreased from 11.15 ± 4.64 Hz to no detectable activity. The result was similar with 5 per cent Betadine (n = 7), with no significant difference compared with the 10 per cent solution findings.Conclusion:Betadine, at either 5 and 10 per cent, was ciliotoxic. Caution should be applied to the use of topical Betadine solution on the respiratory mucosal surface.


1998 ◽  
Vol 12 (1) ◽  
pp. 53-58 ◽  
Author(s):  
Mark Jorissen

Mucociliary transport is one of the most important defense mechanisms of the airway. Mucociliary transport time or rate, as measured using the saccharin test or the radioisotope technique, respectively, is clinically the most relevant parameter, although subject to large intra- and interindividual variability. There is no correlation between mucociliary transport in vivo and ciliary beat frequency ex vivo. Preliminary evidence demonstrates that mucociliary transport correlates with ciliary structure and orientation as investigated with transmission and scanning electron microscopy. A correlation is presented between ciliary beat frequency and secondary ciliary abnormalities. This correlation can best be described according to the logistic sigmoid model (r = 0.69). Based on these functional data, an ultrastructural distinction is proposed among normal (less than 5%), light (5 to 15%), moderate (15 to 25%), and severe (more than 25%) secondary ciliary dyskinesia.


1979 ◽  
Vol 39 (1) ◽  
pp. 29-52
Author(s):  
C.J. Schaap ◽  
A. Forer

Using phase-contrast cinemicrography on living crane fly (Nephrotoma suturalis Loew and Nephrotoma ferruginea Fabricius) spermatocytes, we have studied the effects of a range of temperatures (6–30 degrees C) on the anaphase I chromosome-to-pole movements of both autosomes and sex chromosomes. In contrast to previous work we have been able to study chromosome-to-pole velocities of autosomes without concurrent pole-to-pole elongation. In these cells we found that the higher the temperature, the faster was the autosomal chromosomes movement. From reviewing the literature we find that the general pattern of the effects of temperature on chromosome movement is similar whether or not pole-to-pole elongation occurs simultaneously with the chromosome-to-pole movement. Changes in cellular viscosities calculated from measurements of particulate Brownian movement do not seem to be able to account for the observed velocity differences due to temperature. Temperature effects on muscle contraction speed, flagellar beat frequency, ciliary beat frequency, granule flow in nerves, and chromosome movement have been compared, as have the activation energies for the rate-limiting steps in these motile systems: no distinction between possible mechanisms of force production is possible using these comparisons. The data show that even the different autosomes within single spermatocytes usually move at different speeds. These velocity differences cannot simply be related to chromosome size as the autosomes are visually indistinguishable. The sex chromosomes start their anaphase poleward movement after that of the autosomes, and move more slowly (by a factor of about 4), but their velocities appear to be affected by temperature in the same fashion as those of the autosomes. The interval between the onset of autosome anaphase and sex chromosome anaphase is also affected by temperature: the higher the temperature, the shorter the interval between the 2 stages. We have observed abnormalities in sex chromosome segregation, which may be due to temperature, but have not determined what the exact temperature shift conditions are that cause these abnormalities.


Sign in / Sign up

Export Citation Format

Share Document