scholarly journals Nociception testing during fixed-wing ambulance flights. An interventional pilot study on the effects of flight-related environmental changes on the nociception of healthy volunteers

2019 ◽  
Author(s):  
Johannes Prottengeier ◽  
Stefan Elsner ◽  
Andreas Wehrfritz ◽  
Andreas Moritz ◽  
Joachim Schmidt ◽  
...  

AbstractBackgroundThe effects of environmental changes on the somato-sensory system during long-distance air ambulance flights need to be further investigated. Changes in nociceptive capacity are conceivable in light of previous studies performed under related environmental settings. We used standardized somato-sensory testing to investigate nociception in healthy volunteers during air-ambulance flights.MethodsTwenty-five healthy individuals were submitted to a test compilation analogous to the quantitative sensory testing battery – performed during actual air-ambulance flights. Measurements were paired around the major changes of external factors during take-off/climb and descent/landing. Bland-Altman-Plots were calculated to identify possible systemic effects.ResultsBland-Altman-analyses suggest that the thresholds of stimulus detection and pain as well as above-threshold pain along critical waypoints of travel are not subject to systemic effects but instead demonstrate random variations.ConclusionsWe provide a novel description of a real-life experimental setup and demonstrate the general feasibility of performing somato-sensory testing during ambulance flights. No systematic effects on the nociception of healthy individuals were apparent from our data. Our findings open up the possibility of future investigations into potential effects of ambulance flights on patients suffering acute or chronic pain.

2019 ◽  
Author(s):  
CM Gillan ◽  
MM Vaghi ◽  
FH Hezemans ◽  
Grothe S van Ghesel ◽  
J Dafflon ◽  
...  

AbstractCompulsivity is associated with failures in goal-directed control, an important cognitive faculty that protects against developing habits. But might this effect be explained by co-occurring anxiety? Previous studies have found goal-directed deficits in other anxiety disorders, and to some extent when healthy individuals are stressed, suggesting this is plausible. We carried out a causal test of this hypothesis in two experiments (between-subject N=88; within-subject N=50) that used the inhalation of hypercapnic gas (7.5% CO2) to induce an acute state of anxiety in healthy volunteers. In both experiments, we successfully induced anxiety, assessed physiologically and psychologically, but this did not affect goal-directed performance. In a third experiment (N=1413), we used a correlational design to test if real-life anxiety-provoking events (panic attacks, stressful events) impair goal-directed control. While small effects were observed, none survived controlling for individual differences in compulsivity. These data suggest that anxiety has no meaningful impact on goal-directed control.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Cynthia Reséndiz-Infante ◽  
Gilles Gauthier

AbstractMany avian migrants have not adjusted breeding phenology to climate warming resulting in negative consequences for their offspring. We studied seasonal changes in reproductive success of the greater snow goose (Anser caerulescens atlantica), a long-distance migrant. As the climate warms and plant phenology advances, the mismatch between the timing of gosling hatch and peak nutritive quality of plants will increase. We predicted that optimal laying date yielding highest reproductive success occurred earlier over time and that the seasonal decline in reproductive success increased. Over 25 years, reproductive success of early breeders increased by 42%, producing a steeper seasonal decline in reproductive success. The difference between the laying date producing highest reproductive success and the median laying date of the population increased, which suggests an increase in the selection pressure for that trait. Observed clutch size was lower than clutch size yielding the highest reproductive success for most laying dates. However, at the individual level, clutch size could still be optimal if the additional time required to acquire nutrients to lay extra eggs is compensated by a reduction in reproductive success due to a delayed laying date. Nonetheless, breeding phenology may not respond sufficiently to meet future environmental changes induced by warming temperatures.


Designs ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 17
Author(s):  
Nur-A-Alam ◽  
Mominul Ahsan ◽  
Md. Abdul Based ◽  
Julfikar Haider ◽  
Eduardo M. G. Rodrigues

In the era of Industry 4.0, remote monitoring and controlling appliance/equipment at home, institute, or industry from a long distance with low power consumption remains challenging. At present, some smart phones are being actively used to control appliances at home or institute using Internet of Things (IoT) systems. This paper presents a novel smart automation system using long range (LoRa) technology. The proposed LoRa based system consists of wireless communication system and different types of sensors, operated by a smart phone application and powered by a low-power battery, with an operating range of 3–12 km distance. The system established a connection between an android phone and a microprocessor (ESP32) through Wi-Fi at the sender end. The ESP32 module was connected to a LoRa module. At the receiver end, an ESP32 module and LoRa module without Wi-Fi was employed. Wide Area Network (WAN) communication protocol was used on the LoRa module to provide switching functionality of the targeted area. The performance of the system was evaluated by three real-life case studies through measuring environmental temperature and humidity, detecting fire, and controlling the switching functionality of appliances. Obtaining correct environmental data, fire detection with 90% accuracy, and switching functionality with 92.33% accuracy at a distance up to 12 km demonstrated the high performance of the system. The proposed smart system with modular design proved to be highly effective in controlling and monitoring home appliances from a longer distance with relatively lower power consumption.


Cephalalgia ◽  
2015 ◽  
Vol 36 (2) ◽  
pp. 172-178 ◽  
Author(s):  
Emma Katrine Hansen ◽  
Song Guo ◽  
Messoud Ashina ◽  
Jes Olesen

Background A model for the testing of novel antimigraine drugs should ideally use healthy volunteers for ease of recruiting. Cilostazol provokes headache in healthy volunteers with some migraine features such as pulsating pain quality and aggravation by physical activity. Therefore, this headache might respond to sumatriptan, a requirement for validation. The hypothesis of the present study was that sumatriptan but not placebo is effective in cilostazol-induced headache in healthy individuals. Methods In a double-blind, randomized, cross-over design, 30 healthy volunteers of both sexes received cilostazol 200 mg on two separate days, each day followed by oral self-administered placebo or sumatriptan 50 mg. Headache response and accompanying symptoms were registered in a questionnaire by the participants themselves. Results Cilostazol induced a reproducible headache in 90% of the participants. The headache had several migraine-like features in most individuals. Median peak headache score was 2 on the sumatriptan day and 3 on the placebo day ( p = 0.17). There was no reduction in headache intensity two hours after sumatriptan ( p = 0.97) and difference in AUC 0 to four hours between two experimental days was not significant ( p = 0.18). On the placebo day eight participants took rescue medication compared to 3 on the sumatriptan day ( p = 0.13). Conclusion Despite similarities with migraine headache, cilostazol-induced headache in healthy volunteers does not respond to sumatriptan.


2020 ◽  
Vol 78 (7) ◽  
pp. 424-429
Author(s):  
Ibrahim Halil YASAK ◽  
Mustafa YILMAZ ◽  
Murat GÖNEN ◽  
Metin ATESCELIK ◽  
Mehtap GURGER ◽  
...  

ABSTRACT Objective: Ubiquitin C-terminal Hydrolase-L1 (UCH-L1) enzyme levels were investigated in patients with epilepsy, epileptic seizure, remission period, and healthy individuals. Methods: Three main groups were evaluated, including epileptic seizure, patients with epilepsy in the non-seizure period, and healthy volunteers. The patients having a seizure in the Emergency department or brought by a postictal confusion were included in the epileptic attack group. The patients having a seizure attack or presenting to the Neurology outpatient department for follow up were included in the non-seizure (remission period) group. Results: The UCH-L1 enzyme levels of 160 patients with epilepsy (80 patients with epileptic attack and 80 patients with epilepsy in the non-seizure period) and 100 healthy volunteers were compared. Whereas the UCH-L1 enzyme levels were 8.30 (IQR=6.57‒11.40) ng/mL in all patients with epilepsy, they were detected as 3.90 (IQR=3.31‒7.22) ng/mL in healthy volunteers, and significantly increased in numbers for those with epilepsy (p<0.001). However, whereas the UCH-L1 levels were 8.50 (IQR=6.93‒11.16) ng/mL in the patients with epileptic seizures, they were 8.10 (IQR=6.22‒11.93) ng/mL in the non-seizure period, and no significant difference was detected (p=0.6123). When the UCH-L1 cut-off value was taken as 4.34 mg/mL in Receiver Operating Characteristic (ROC) Curve analysis, the sensitivity and specificity detected were 93.75 and 66.00%, respectively (AUG=0.801; p<0.0001; 95%CI 0.747‒0.848) for patients with epilepsy. Conclusion: Even though UCH-L1 levels significantly increased more in patients with epilepsy than in healthy individuals, there was no difference between epileptic seizure and non-seizure periods.


2021 ◽  
Vol 9 ◽  
Author(s):  
Eliezer Gurarie ◽  
Sriya Potluri ◽  
George Christopher Cosner ◽  
Robert Stephen Cantrell ◽  
William F. Fagan

Seasonal migrations are a widespread and broadly successful strategy for animals to exploit periodic and localized resources over large spatial scales. It remains an open and largely case-specific question whether long-distance migrations are resilient to environmental disruptions. High levels of mobility suggest an ability to shift ranges that can confer resilience. On the other hand, a conservative, hard-wired commitment to a risky behavior can be costly if conditions change. Mechanisms that contribute to migration include identification and responsiveness to resources, sociality, and cognitive processes such as spatial memory and learning. Our goal was to explore the extent to which these factors interact not only to maintain a migratory behavior but also to provide resilience against environmental changes. We develop a diffusion-advection model of animal movement in which an endogenous migratory behavior is modified by recent experiences via a memory process, and animals have a social swarming-like behavior over a range of spatial scales. We found that this relatively simple framework was able to adapt to a stable, seasonal resource dynamic under a broad range of parameter values. Furthermore, the model was able to acquire an adaptive migration behavior with time. However, the resilience of the process depended on all the parameters under consideration, with many complex trade-offs. For example, the spatial scale of sociality needed to be large enough to capture changes in the resource, but not so large that the acquired collective information was overly diluted. A long-term reference memory was important for hedging against a highly stochastic process, but a higher weighting of more recent memory was needed for adapting to directional changes in resource phenology. Our model provides a general and versatile framework for exploring the interaction of memory, movement, social and resource dynamics, even as environmental conditions globally are undergoing rapid change.


Author(s):  
Judith A. Strong ◽  
Jun-Ming Zhang ◽  
Hans-Georg Schaible

This article reviews some of the preclinical studies of the sympathetic nervous system’s role in arthritis, inflammatory, and neuropathic pain, in light of the emerging understanding of how the immune system, sensory system, and sympathetic system markedly affect each other’s function, with many mechanisms besides sprouting. Many studies show a pro-inflammatory and pro-nociceptive role for the sympathetic nerves in preclinical models. However, these studies are sometimes conflicting, and the role of the sympathetic nerves can sometimes be anti-inflammatory or anti-nociceptive, particularly at later stages or when systemic effects on immune tissues are considered. The article discusses human correlates of these preclinical studies, as well as some possible reasons for the many conflicting studies in the literature. The article argues that sympathetic-based interventions for chronic pain conditions hold promise despite the conflicting findings in the field, especially if better ways to define appropriate subsets of patients can be developed.


2019 ◽  
Vol 20 (23) ◽  
pp. 6082 ◽  
Author(s):  
Stine Thorsen ◽  
Irina Gromova ◽  
Ib Christensen ◽  
Simon Fredriksson ◽  
Claus Andersen ◽  
...  

The burden of colorectal cancer (CRC) is considerable—approximately 1.8 million people are diagnosed each year with CRC and of these about half will succumb to the disease. In the case of CRC, there is strong evidence that an early diagnosis leads to a better prognosis, with metastatic CRC having a 5-year survival that is only slightly greater than 10% compared with up to 90% for stage I CRC. Clearly, biomarkers for the early detection of CRC would have a major clinical impact. We implemented a coherent gel-based proteomics biomarker discovery platform for the identification of clinically useful biomarkers for the early detection of CRC. Potential protein biomarkers were identified by a 2D gel-based analysis of a cohort composed of 128 CRC and site-matched normal tissue biopsies. Potential biomarkers were prioritized and assays to quantitatively measure plasma expression of the candidate biomarkers were developed. Those biomarkers that fulfilled the preset criteria for technical validity were validated in a case-control set of plasma samples, including 70 patients with CRC, adenomas, or non-cancer diseases and healthy individuals in each group. We identified 63 consistently upregulated polypeptides (factor of four-fold or more) in our proteomics analysis. We selected 10 out of these 63 upregulated polypeptides, and established assays to measure the concentration of each one of the ten biomarkers in plasma samples. Biomarker levels were analyzed in plasma samples from healthy individuals, individuals with adenomas, CRC patients, and patients with non-cancer diseases and we identified one protein, tropomyosin 3 (Tpm3) that could discriminate CRC at a significant level (p = 0.0146). Our results suggest that at least one of the identified proteins, Tpm3, could be used as a biomarker in the early detection of CRC, and further studies should provide unequivocal evidence for the real-life clinical validity and usefulness of Tpm3.


Sign in / Sign up

Export Citation Format

Share Document