scholarly journals The onset time of balance control during walking is phase-independent, but the magnitude of the response is not

2019 ◽  
Author(s):  
Hendrik Reimann ◽  
Tyler Fettrow ◽  
David Grenet ◽  
Elizabeth D. Thompson ◽  
John J. Jeka

AbstractThe human body is mechanically unstable during walking. Maintaining upright stability requires constant regulation of muscle force by the central nervous system to push against the ground and move the body mass in the desired way. Activation of muscles in the lower body in response to sensory or mechanical perturbations during walking is usually highly phase-dependent, because the effect any specific muscle force has on the body movement depends upon the body configuration. Yet the resulting movement patterns of the upper body after the same perturbations are largely phase-independent. This is puzzling, because any change of upper-body movement must be generated by parts of the lower body pushing against the ground. How do phase-dependent muscle activation patterns along the lower body generate phase-independent movement patterns of the upper body? We hypothesize that in response to a perceived threat to balance, the nervous system generates a functional response by pushing against the ground in any way possible with the current body configuration. This predicts that the changes in the ground reaction force patterns following a balance perturbation should be phase-independent. Here we test this hypothesis by disturbing upright balance using Galvanic vestibular stimulation at three different points in the gait cycle. We measure the resulting changes in whole-body center of mass movement and the location of the center of pressure of the ground reaction force. We find that the whole-body balance response is not phase-independent as expected: balance responses are initiated faster and are smaller following a disturbance late in the gait cycle. Somewhat paradoxically, the initial center of pressure changes are larger for perturbations late in the gait cycle. The onset of the center of pressure changes however, does not depend on the phase of the perturbation. The results partially support our hypothesis of a phase-independent functional balance response underlying the phase-dependent recruitment of different balance mechanisms at different points of the gait cycle. We conclude that the central nervous system recruits any available mechanism to push against the ground to maintain balance as fast as possible in response to a perturbation, but the different mechanisms do not have equal strength.

2014 ◽  
Vol 42 (1) ◽  
pp. 51-61 ◽  
Author(s):  
Matteo Zago ◽  
Andrea Francesco Motta ◽  
Andrea Mapelli ◽  
Isabella Annoni ◽  
Christel Galvani ◽  
...  

Abstract Soccer kicking kinematics has received wide interest in literature. However, while the instep-kick has been broadly studied, only few researchers investigated the inside-of-the-foot kick, which is one of the most frequently performed techniques during games. In particular, little knowledge is available about differences in kinematics when kicking with the preferred and non-preferred leg. A motion analysis system recorded the three-dimensional coordinates of reflective markers placed upon the body of nine amateur soccer players (23.0 ± 2.1 years, BMI 22.2 ± 2.6 kg/m2), who performed 30 pass-kicks each, 15 with the preferred and 15 with the non-preferred leg. We investigated skill kinematics while maintaining a perspective on the complete picture of movement, looking for laterality related differences. The main focus was laid on: anatomical angles, contribution of upper limbs in kick biomechanics, kinematics of the body Center of Mass (CoM), which describes the whole body movement and is related to balance and stability. When kicking with the preferred leg, CoM displacement during the ground-support phase was 13% higher (p<0.001), normalized CoM height was 1.3% lower (p<0.001) and CoM velocity 10% higher (p<0.01); foot and shank velocities were about 5% higher (p<0.01); arms were more abducted (p<0.01); shoulders were rotated more towards the target (p<0.01, 6° mean orientation difference). We concluded that differences in motor control between preferred and non-preferred leg kicks exist, particularly in the movement velocity and upper body kinematics. Coaches can use these results to provide effective instructions to players in the learning process, moving their focus on kicking speed and upper body behavior


2017 ◽  
Vol 117 (5) ◽  
pp. 1911-1934 ◽  
Author(s):  
Richard J. McCloskey ◽  
Anthony D. Fouad ◽  
Matthew A. Churgin ◽  
Christopher Fang-Yen

Animals optimize survival and reproduction in part through control of behavioral states, which depend on an organism’s internal and external environments. In the nematode Caenorhabditis elegans a variety of behavioral states have been described, including roaming, dwelling, quiescence, and episodic swimming. These states have been considered in isolation under varied experimental conditions, making it difficult to establish a unified picture of how they are regulated. Using long-term imaging, we examined C. elegans episodic behavioral states under varied mechanical and nutritional environments. We found that animals alternate between high-activity (active) and low-activity (sedentary) episodes in any mechanical environment, while the incidence of episodes and their behavioral composition depend on food levels. During active episodes, worms primarily roam, as characterized by continuous whole body movement. During sedentary episodes, animals exhibit dwelling (slower movements confined to the anterior half of the body) and quiescence (a complete lack of movement). Roaming, dwelling, and quiescent states are manifest not only through locomotory characteristics but also in pharyngeal pumping (feeding) and in egg-laying behaviors. Next, we analyzed the genetic basis of behavioral states. We found that modulation of behavioral states depends on neuropeptides and insulin-like signaling in the nervous system. Sensory neurons and the Foraging homolog EGL-4 regulate behavior through control of active/sedentary episodes. Optogenetic stimulation of dopaminergic and serotonergic neurons induced dwelling, implicating dopamine as a dwell-promoting neurotransmitter. Our findings provide a more unified description of behavioral states and suggest that perception of nutrition is a conserved mechanism for regulating animal behavior. NEW & NOTEWORTHY One strategy by which animals adapt to their internal states and external environments is by adopting behavioral states. The roundworm Caenorhabditis elegans is an attractive model for investigating how behavioral states are genetically and neuronally controlled. Here we describe the hierarchical organization of behavioral states characterized by locomotory activity, feeding, and egg-laying. We show that decisions to engage in these behaviors are controlled by the nervous system through insulin-like signaling and the perception of food.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii104-ii104
Author(s):  
Sara Morrow ◽  
Varun Prabhu ◽  
Rohinton S Tarapore ◽  
Gina Theerman ◽  
Leah Lake ◽  
...  

Abstract Imipridone ONC201 is an investigational agent in phase II clinical trials for H3 K27M-mutant diffuse midline glioma with evidence of durable objective responses and clinical symptom improvements as a single agent. The systemic pharmacokinetics of ONC201 and its ability to achieve target concentrations in supratentorial glioblastoma have been demonstrated in clinical trials; however, its clearance and distribution in midline structures and other areas of the central nervous system (CNS) haven’t been evaluated. A quantitative whole-body autoradiography study was conducted in Long-Evans rats with a single dose of [14C]-ONC201. [14C]-ONC201-related material was rapidly distributed throughout the body, with concentrations peaking at 1h for most tissues. The endocrine, metabolic/excretory, ocular and gastrointestinal tract tissues contained the highest distribution of [14C]-ONC201-derived radioactivity. Importantly, [14C]-ONC201 material was distributed evenly across brain substructures, including the meninges and midline structures of the brain; all tissues had a half-life of 1.4–7.9h, with the exception of the meninges (2397.3h). Given the uniform distribution throughout the CNS, we evaluated the permeability and efflux potential of ONC201 in bidirectional transport assays using human Caco-2 cell monolayers. ONC201 displayed high permeability in the apical to basolateral direction with apparent permeability values of 23–31×10–6 cm/s at 7–700μM. In the basolateral to apical direction, apparent permeability values were 11–24 × 10–6 cm/s. The efflux ratio values were 0.46–0.79 for ONC201, suggesting that ONC201 is not a substrate of efflux transporters. However, ONC201 exerted inhibitory potential on MDR1- (90.6%) and BCRP-mediated (81.6%) transport at 200mM. In summary, ONC201 exhibits passive diffusion without being effluxed, which may enable its rapid and wide distribution throughout the CNS. This distribution profile suggests that the compound may achieve therapeutic concentrations throughout the CNS with oral administration and that investigation of additional CNS tumors will not be hindered by drug delivery to specific anatomic structures.


2020 ◽  
Vol 124 (4) ◽  
pp. 1045-1055
Author(s):  
Rouven Kenville ◽  
Tom Maudrich ◽  
Carmen Vidaurre ◽  
Dennis Maudrich ◽  
Arno Villringer ◽  
...  

It is largely unexplored how the central nervous system achieves coordination of homologous muscles of the upper and lower body within a compound whole body movement, and to what extent this neural drive is modulated between different movement periods and muscles. Using intermuscular coherence analysis, we show that homologous muscle functions are mediated through common oscillatory input that extends over alpha, beta, and gamma frequencies with different synchronization patterns at different movement periods.


Author(s):  
F. L. Azizova ◽  
U. A. Boltaboev

The features of production factors established at the main workplaces of shoe production are considered. The materials on the results of the study of the functional state of the central nervous system of women workers of shoe production in the dynamics of the working day are presented. The level of functional state of the central nervous system was determined by the speed of visual and auditory-motor reactions, installed using the universal device chronoreflexometer. It was revealed that in the body of workers of shoe production there is an early development of inhibitory processes in the central nervous system, which is expressed in an increase in the number of errors when performing tasks on proofreading tables. It was found that the most pronounced shift s in auditory-motor responses were observed in professional groups, where higher levels of noise were registered in the workplace. The correlation analysis showed a close direct relationship between the growth of mistakes made in the market and the decrease in production. An increase in the time spent on the task indicates the occurrence and growth of production fatigue.Funding. The study had no funding.Conflict of interests. The authors declare no conflict of interests.


Author(s):  
Prithiv K R Kumar

Stem cells have the capacity to differentiate into any type of cell or organ. Stems cell originate from any part of the body, including the brain. Brain cells or rather neural stem cells have the capacitive advantage of differentiating into the central nervous system leading to the formation of neurons and glial cells. Neural stem cells should have a source by editing DNA, or by mixings chemical enzymes of iPSCs. By this method, a limitless number of neuron stem cells can be obtained. Increase in supply of NSCs help in repairing glial cells which in-turn heal the central nervous system. Generally, brain injuries cause motor and sensory deficits leading to stroke. With all trials from novel therapeutic methods to enhanced rehabilitation time, the economy and quality of life is suppressed. Only PSCs have proven effective for grafting cells into NSCs. Neurons derived from stem cells is the only challenge that limits in-vitro usage in the near future.


Author(s):  
Audrey Rousseaud ◽  
Stephanie Moriceau ◽  
Mariana Ramos-Brossier ◽  
Franck Oury

AbstractReciprocal relationships between organs are essential to maintain whole body homeostasis. An exciting interplay between two apparently unrelated organs, the bone and the brain, has emerged recently. Indeed, it is now well established that the brain is a powerful regulator of skeletal homeostasis via a complex network of numerous players and pathways. In turn, bone via a bone-derived molecule, osteocalcin, appears as an important factor influencing the central nervous system by regulating brain development and several cognitive functions. In this paper we will discuss this complex and intimate relationship, as well as several pathologic conditions that may reinforce their potential interdependence.


2004 ◽  
Vol 91 (4) ◽  
pp. 1524-1535 ◽  
Author(s):  
Grégoire Courtine ◽  
Marco Schieppati

We tested the hypothesis that common principles govern the production of the locomotor patterns for both straight-ahead and curved walking. Whole body movement recordings showed that continuous curved walking implies substantial, limb-specific changes in numerous gait descriptors. Principal component analysis (PCA) was used to uncover the spatiotemporal structure of coordination among lower limb segments. PCA revealed that the same kinematic law accounted for the coordination among lower limb segments during both straight-ahead and curved walking, in both the frontal and sagittal planes: turn-related changes in the complex behavior of the inner and outer limbs were captured in limb-specific adaptive tuning of coordination patterns. PCA was also performed on a data set including all elevation angles of limb segments and trunk, thus encompassing 13 degrees of freedom. The results showed that both straight-ahead and curved walking were low dimensional, given that 3 principal components accounted for more than 90% of data variance. Furthermore, the time course of the principal components was unchanged by curved walking, thereby indicating invariant coordination patterns among all body segments during straight-ahead and curved walking. Nevertheless, limb- and turn-dependent tuning of the coordination patterns encoded the adaptations of the limb kinematics to the actual direction of the walking body. Absence of vision had no significant effect on the intersegmental coordination during either straight-ahead or curved walking. Our findings indicate that kinematic laws, probably emerging from the interaction of spinal neural networks and mechanical oscillators, subserve the production of both straight-ahead and curved walking. During locomotion, the descending command tunes basic spinal networks so as to produce the changes in amplitude and phase relationships of the spinal output, sufficient to achieve the body turn.


In the study of the phenomena of anaphylaxis there are certain points on which some measure of agreement seems to have been attained. In the case of anaphylaxis to soluble proteins, with which alone we are directly concerned in this paper, the majority of investigators probably accept the view that the condition is due to the formation of an antibody of the precipitin type. Concerning the method, however, by which the presence of this antibody causes the specific sensitiveness, the means by which its interaction with the antibody produces the anaphylactic shock, there is a wide divergence of conception. Two main currents of speculation can be discerned. One view, historically rather the earlier, and first put forward by Besredka (1) attributes the anaphylactic condition to the location of the antibody in the body cells. There is not complete unanimity among adherents of this view as to the nature of the antibody concerned, or as to the class of cells containing it which are primarily affected in the anaphylactic shock. Besredka (2) himself has apparently not accepted the identification of the anaphylactic antibody with a precipitin, but regards it as belonging to a special class (sensibilisine). He also regards the cells of the central nervous system as those primarily involved in the anaphylactic shock in the guinea-pig. Others, including one of us (3), have found no adequate reason for rejecting the strong evidence in favour of the precipitin nature of the anaphylactic antibody, produced by Doerr and Russ (4), Weil (5), and others, and have accepted and confirmed the description of the rapid anaphylactic death in the guinea-pig as due to a direct stimulation of the plain-muscle fibres surrounding the bronchioles, causing valve-like obstruction of the lumen, and leading to asphyxia, with the characteristic fixed distension of the lungs, as first described by Auer and Lewis (6), and almost simultaneously by Biedl and Kraus (7). But the fundamental conception of anaphylaxis as due to cellular location of an antibody, and of the reaction as due to the union of antigen and antibody taking place in the protoplasm, is common to a number of workers who thus differ on details.


1957 ◽  
Vol 34 (3) ◽  
pp. 306-333
Author(s):  
G. M. HUGHES

I. The effects of limb amputation and the cutting of commissures on the movements of the cockroach Blatta orientalis have been investigated with the aid of cinematography. Detailed analyses of changes in posture and rhythm of leg movements are given. 2. It is shown that quite marked changes occur following the amputation of a single leg or the cutting of a single commissure between the thoracic ganglia. 3. Changes following the amputation of a single leg are immediate and are such that the support normally provided by the missing leg is taken over by the two remaining legs on that side. Compensatory movements are also found in the contralateral legs. 4. When two legs of opposite sides are amputated it has been confirmed that the diagonal sequence tends to be adopted, but this is not invariably true. Besides alterations in the rhythm which this may involve, there are again adaptive modifications in the movements of the limbs with respect to the body. 5. When both comrnissures between the meso- and metathoracic ganglia are cut, the hind pair of legs fall out of rhythm with the other four legs. The observations on the effects of cutting commissures stress the importance of intersegmental pathways in co-ordination. 6. It is shown that all modifications following the amputation of legs may be related to the altered mechanical conditions. Some of the important factors involved in normal co-ordination are discussed, and it is suggested that the altered movements would be produced by the operation of these factors under the new conditions. It is concluded that the sensory inflow to the central nervous system is of major importance in the co-ordination of normal movement.


Sign in / Sign up

Export Citation Format

Share Document