scholarly journals NaV1.1 and NaV1.6 selective compounds reduce the behavior phenotype in a novel zebrafish model for Dravet Syndrome

2019 ◽  
Author(s):  
Wout J. Weuring ◽  
Sakshi Singh ◽  
Linda Volkers ◽  
Martin Rook ◽  
Ruben H. van ‘t Slot ◽  
...  

AbstractDravet syndrome is caused by dominant loss-of-function mutations in SCN1A which cause reduced activity of Nav1.1 leading to lack of neuronal inhibition. On the other hand, gain-of-function mutations in SCN8A can lead to a severe epileptic encephalopathy subtype by over activating NaV1.6 channels. These observations suggest that Nav1.1 and Nav1.6 represent two opposing sides of the neuronal balance between inhibition and activation. Here, we hypothesize that Dravet syndrome may be treated by either enhancing Nav1.1 or reducing Nav1.6 activity. To test this hypothesis we generated and characterized a novel DS zebrafish model and tested new compounds that selectively activate or inhibit the human NaV1.1 or NaV1.6 channel respectively. We used CRISPR/Cas9 to generate two separate Scn1Lab knockout lines as an alternative to previous knock-down models. Using an optimized locomotor assay, spontaneous burst movements were detected that were unique to Scn1Lab knockouts and disappear when introducing human SCN1A mRNA. Besides the behavioral phenotype, Scn1Lab knockouts show sudden, electrical discharges in the brain that indicate epileptic seizures in zebrafish. Scn1Lab knockouts showed increased sensitivity to the convulsant pentylenetetrazole and a reduction in whole organism GABA levels. Drug screenings further validated a Dravet syndrome phenotype. We tested the NaV1.1 activator AA43279 and our newly synthesized NaV1.6 inhibitors MV1369 and MV1312 in the Scn1Lab knockouts. Both type of compounds significantly reduced the number of burst movements. Our results show that selective inhibition of NaV1.6 could be just as efficient as selective activation of NaV1.1 and these approaches could prove to be novel potential treatment strategies for Dravet syndrome and other (genetic) epilepsies. Compounds tested in zebrafish however, should always be further validated in other model systems, preferably human derived.

2021 ◽  
Vol 15 ◽  
Author(s):  
Nikolas Layer ◽  
Lukas Sonnenberg ◽  
Emilio Pardo González ◽  
Jan Benda ◽  
Ulrike B. S. Hedrich ◽  
...  

Dravet syndrome (DS) is a developmental epileptic encephalopathy mainly caused by functional NaV1.1 haploinsufficiency in inhibitory interneurons. Recently, a new conditional mouse model expressing the recurrent human p.(Ala1783Val) missense variant has become available. In this study, we provided an electrophysiological characterization of this variant in tsA201 cells, revealing both altered voltage-dependence of activation and slow inactivation without reduced sodium peak current density. Based on these data, simulated interneuron (IN) firing properties in a conductance-based single-compartment model suggested surprisingly similar firing deficits for NaV1.1A1783V and full haploinsufficiency as caused by heterozygous truncation variants. Impaired NaV1.1A1783V channel activation was predicted to have a significantly larger impact on channel function than altered slow inactivation and is therefore proposed as the main mechanism underlying IN dysfunction. The computational model was validated in cortical organotypic slice cultures derived from conditional Scn1aA1783V mice. Pan-neuronal activation of the p.Ala1783V in vitro confirmed a predicted IN firing deficit and revealed an accompanying reduction of interneuronal input resistance while demonstrating normal excitability of pyramidal neurons. Altered input resistance was fed back into the model for further refinement. Taken together these data demonstrate that primary loss of function (LOF) gating properties accompanied by altered membrane characteristics may match effects of full haploinsufficiency on the neuronal level despite maintaining physiological peak current density, thereby causing DS.


Cells ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1199 ◽  
Author(s):  
Alexandre Brenet ◽  
Rahma Hassan-Abdi ◽  
Julie Somkhit ◽  
Constantin Yanicostas ◽  
Nadia Soussi-Yanicostas

Dravet syndrome is a type of severe childhood epilepsy that responds poorly to current anti-epileptic drugs. In recent years, zebrafish disease models with Scn1Lab sodium channel deficiency have been generated to seek novel anti-epileptic drug candidates, some of which are currently undergoing clinical trials. However, the spectrum of neuronal deficits observed following Scn1Lab depletion in zebrafish larvae has not yet been fully explored. To fill this gap and gain a better understanding of the mechanisms underlying neuron hyperexcitation in Scn1Lab-depleted larvae, we analyzed neuron activity in vivo using combined local field potential recording and transient calcium uptake imaging, studied the distribution of excitatory and inhibitory synapses and neurons as well as investigated neuron apoptosis. We found that Scn1Lab-depleted larvae displayed recurrent epileptiform seizure events, associating massive synchronous calcium uptakes and ictal-like local field potential bursts. Scn1Lab-depletion also caused a dramatic shift in the neuronal and synaptic balance toward excitation and increased neuronal death. Our results thus provide in vivo evidence suggesting that Scn1Lab loss of function causes neuron hyperexcitation as the result of disturbed synaptic balance and increased neuronal apoptosis.


Author(s):  
Tiantian Wang ◽  
Mingshan Zhou ◽  
Quan Zhang ◽  
Cuizhen Zhang ◽  
Gang Peng

AbstractMechanistic target of rapamycin (mTOR) signaling governs important physiological and pathological processes key to cellular life. Loss of mTOR negative regulators and subsequent over-activation of mTOR signaling are major causes underlying epileptic encephalopathy. Our previous studies showed that UBTOR/KIAA1024/MINAR1 acts as a negative regulator of mTOR signaling, but whether UBTOR plays a role in neurological diseases remains largely unknown. We therefore examined a zebrafish model and found that ubtor disruption caused increased spontaneous embryonic movement and neuronal activity in spinal interneurons, as well as the expected hyperactivation of mTOR signaling in early zebrafish embryos. In addition, mutant ubtor larvae showed increased sensitivity to the convulsant pentylenetetrazol, and both the motor activity and the neuronal activity were up-regulated. These phenotypic abnormalities in zebrafish embryos and larvae were rescued by treatment with the mTORC1 inhibitor rapamycin. Taken together, our findings show that ubtor regulates motor hyperactivity and epilepsy-like behaviors by elevating neuronal activity and activating mTOR signaling.


2021 ◽  
Vol 13 ◽  
pp. 117957352110480
Author(s):  
Changqing Xu ◽  
Yumin Zhang ◽  
David Gozal ◽  
Paul Carney

Dravet syndrome (DS) is a channelopathy, neurodevelopmental, epileptic encephalopathy characterized by seizures, developmental delay, and cognitive impairment that includes susceptibility to thermally induced seizures, spontaneous seizures, ataxia, circadian rhythm and sleep disorders, autistic-like behaviors, and premature death. More than 80% of DS cases are linked to mutations in genes which encode voltage-gated sodium channel subunits, SCN1A and SCN1B, which encode the Nav1.1α subunit and Nav1.1β1 subunit, respectively. There are other gene mutations encoding potassium, calcium, and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels related to DS. One-third of patients have pharmacoresistance epilepsy. DS is unresponsive to standard therapy. Cannabidiol (CBD), a non-psychoactive phytocannabinoid present in Cannabis, has been introduced for treating DS because of its anticonvulsant properties in animal models and humans, especially in pharmacoresistant patients. However, the etiological channelopathiological mechanism of DS and action mechanism of CBD on the channels are unclear. In this review, we summarize evidence of the direct and indirect action mechanism of sodium, potassium, calcium, and HCN channels in DS, especially sodium subunits. Some channels’ loss-of-function or gain-of-function in inhibitory or excitatory neurons determine the balance of excitatory and inhibitory are associated with DS. A great variety of mechanisms of CBD anticonvulsant effects are focused on modulating these channels, especially sodium, calcium, and potassium channels, which will shed light on ionic channelopathy of DS and the precise molecular treatment of DS in the future.


2021 ◽  
Author(s):  
Hui Hui Wong ◽  
Sze Hwee Seet ◽  
Michael Maier ◽  
Ricardo Moreno Traspas ◽  
Cheryl Lee ◽  
...  

Human C2orf69 is an evolutionary-conserved gene whose function is unknown. Here, we report 9 children from 5 unrelated families with a fatal syndrome consisting of severe auto-inflammation, progredient leukoencephalopathy with recurrent seizures that segregate homozygous loss-of-function C2orf69 variants. C2ORF69 orthologues, which can be found in most eukaryotic genomes including that of unicellular phytoplanktons, bear homology to esterase enzymes. We find that human C2ORF69 is loosely bound to the mitochondrion and its depletion affects mitochondrial membrane potential in human fibroblasts and neurons. Moreover, we show that CRISPR/Cas9-inactivation of zebrafish C2orf69 results in lethality by 8 months of age due to spontaneous epileptic seizures which is accompanied by persistent brain inflammation. Collectively, our results delineate a novel auto-inflammatory Mendelian disorder of C2orf69 deficiency that disrupts the development/homeostasis of the immune and central nervous systems as demonstrated in patients and in a zebrafish model of the disease.


2019 ◽  
Author(s):  
Alexandre Brenet ◽  
Rahma Hassan-Abdi ◽  
Julie Somkhit ◽  
Constantin Yanicostas ◽  
Nadia Soussi-Yanicostas

AbstractDravet syndrome is a type of severe childhood epilepsy that responds poorly to current anti-epileptic drugs. In recent years, zebrafish disease models with Scn1Lab sodium channel deficiency have been generated to seek novel anti-epileptic drug candidates, some of which are currently undergoing clinical trials. However, the spectrum of neuronal deficits observed following Scn1Lab depletion in zebrafish larvae has not yet been fully explored. To fill this gap and gain a better understanding of the mechanisms underlying neuron hyperexcitation in Scn1Lab-depleted larvae, we analyzed neuron activity in vivo using combined local field potential recording and transient calcium uptake imaging, studied the distribution of excitatory and inhibitory synapses and neurons as well as investigated neuron apoptosis. We found that Scn1Lab-depleted larvae displayed recurrent epileptiform seizure events, associating massive synchronous calcium uptakes and ictal-like local field potential bursts. Scn1Lab-depletion also caused a dramatic shift in the neuronal and synaptic balance toward excitation and increased neuronal death. Our results thus provide in vivo evidence suggesting that Scn1Lab loss of function causes neuron hyperexcitation as the result of disturbed synaptic balance and increased neuronal apoptosis.


2021 ◽  
Author(s):  
Kouya Uchino ◽  
Wakana Ikezawa ◽  
Yasuyoshi Tanaka ◽  
Masanobu Deshimaru ◽  
Kaori Kubota ◽  
...  

Dravet syndrome (DS) is an infantile-onset epileptic encephalopathy. More than 80% of DS patients have a heterozygous mutation in SCN1A, which encodes a subunit of the voltage-gated sodium channel, Nav1.1, in neurons. The roles played by astrocytes, the most abundant glial cell type in the brain, have been investigated in the pathogenesis of epilepsy; however, the specific involvement of astrocytes in DS has not been clarified. In this study, we evaluated Ca2+ signaling in astrocytes using genetically modified mice that have a loss-of-function mutation in Scn1a. We found that the slope of spontaneous Ca2+ spiking was increased without a change in amplitude in Scn1a+/− astrocytes. In addition, ATP-induced transient Ca2+ influx and the slope of Ca2+ spiking were also increased in Scn1a+/− astrocytes. These data indicate that perturbed Ca2+ dynamics in astrocytes may be involved in the pathogenesis of DS.


2020 ◽  
Vol 51 (02) ◽  
pp. 135-145 ◽  
Author(s):  
Debopam Samanta

AbstractDravet syndrome (DS), previously known as severe myoclonic epilepsy of infancy, is a severe developmental and epileptic encephalopathy caused by loss-of-function mutations in one copy of SCN1A (haploinsufficiency), located on chromosome 2q24, with decreased function of Nav1.1 sodium channels in GABAergic inhibitory interneurons. Pharmacoresistant seizures in DS start in the infancy in the form of hemiclonic febrile status epilepticus. Later, other intractable seizure types develop including myoclonic seizures. Early normal development in infancy evolves into moderate to severe intellectual impairment, motor impairment, behavioral abnormalities, and later a characteristic crouching gait. Clobazam, valproate, levetiracetam, topiramate, zonisamide, ketogenic diet, and vagus nerve stimulation had been shown to be effective, but even with polytherapy, only 10% of patients get adequate seizure control. The author provides a narrative review of the current treatment paradigm as well as recent advances in the management of DS based on a comprehensive literature review (MEDLINE using PubMed and OvidSP vendors with appropriate keywords to incorporate recent evidence), personal practice, and experience. In recent years, the treatment paradigm of DS is changing with the approval of pharmaceutical-grade cannabidiol oil and stiripentol. Another novel antiepileptic drug (AED), fenfluramine, had also shown excellent efficacy in phase 3 studies of DS. However, these AEDs primarily control seizures without addressing the underlying pathogenesis and other important common comorbidities such as cognitive impairment, autistic behavior, neuropsychiatric abnormalities, and motor impairment including crouching gait. Several agents targeted for DS are in the developmental stage: TAK935, lorcaserin, clemizole, huperzine analog, ataluren, selective sodium channel modulators and activators, antisense oligonucleotide therapy, and adenoviral vector therapy. As DS is associated with a high risk of sudden unexpected death in epilepsy, seizure detection devices can be used in this population for testing and clinical validation of these devices.


2017 ◽  
Vol 49 (01) ◽  
pp. 059-062 ◽  
Author(s):  
Mirjana Gusic ◽  
Roman Günthner ◽  
Bader Alhaddad ◽  
Reka Kovacs-Nagy ◽  
Christine Makowski ◽  
...  

AbstractRecently, heterozygous de novo mutations in SCL1A2 have been reported to underlie severe early-onset epileptic encephalopathy. In one male presenting with epileptic seizures and visual impairment, we identified a novel homozygous splicing variant in SCL1A2 (c.1421 + 1G > C) by using exome sequencing. Functional studies on cDNA level confirmed a consecutive loss of function. Our findings suggest that not only de novo mutations but also biallelic variants in SLC1A2 can cause epilepsy and that there is an additional autosomal recessive mode of inheritance. These findings also contribute to the understanding of the genetic mechanism of autosomal dominant SLC1A2-related epileptic encephalopathy as they exclude haploinsufficiency as exclusive genetic mechanism.


2021 ◽  
Author(s):  
Rita J Serrano ◽  
Clara Lee ◽  
Robert J Bryson-Richardson ◽  
Tamar Sztal

Cyclin-dependent kinase-like-5 (CDKL5) Deficiency Disorder (CDD) is a severe X-linked neurodegenerative disease characterized by early-onset epileptic seizures, low muscle tone, progressive intellectual disability, severe motor function and visual impairment. CDD affects approximately 1 in 60,000 live births with many patients dying by early adulthood. For many patients, quality of life is significantly reduced due to the severity of their neurological symptoms and functional impairment. There are no effective therapies for CDD with current treatments focusing on improving symptoms rather than addressing the underlying causes of the disorder. Zebrafish offer a number of unique advantages for high-throughput pre-clinical evaluation of potential therapies for human neurological diseases including CDD. In particular, the large number of zebrafish that can be produced, together with the possibilities for in vivo imaging and genetic manipulation, allows for the detailed assessment of disease pathogenesis and therapeutic discovery. We have characterised a loss of function zebrafish model for CDD, containing a nonsense mutation in cdkl5. cdkl5 mutant zebrafish display defects in neuronal patterning, microcephaly, and reduced muscle function caused by impaired muscle innervation. This study provides a powerful vertebrate model to investigate CDD disease pathophysiology and allow high-throughput screening for effective therapies.


Sign in / Sign up

Export Citation Format

Share Document