scholarly journals Dravet Variant SCN1AA1783V Impairs Interneuron Firing Predominantly by Altered Channel Activation

2021 ◽  
Vol 15 ◽  
Author(s):  
Nikolas Layer ◽  
Lukas Sonnenberg ◽  
Emilio Pardo González ◽  
Jan Benda ◽  
Ulrike B. S. Hedrich ◽  
...  

Dravet syndrome (DS) is a developmental epileptic encephalopathy mainly caused by functional NaV1.1 haploinsufficiency in inhibitory interneurons. Recently, a new conditional mouse model expressing the recurrent human p.(Ala1783Val) missense variant has become available. In this study, we provided an electrophysiological characterization of this variant in tsA201 cells, revealing both altered voltage-dependence of activation and slow inactivation without reduced sodium peak current density. Based on these data, simulated interneuron (IN) firing properties in a conductance-based single-compartment model suggested surprisingly similar firing deficits for NaV1.1A1783V and full haploinsufficiency as caused by heterozygous truncation variants. Impaired NaV1.1A1783V channel activation was predicted to have a significantly larger impact on channel function than altered slow inactivation and is therefore proposed as the main mechanism underlying IN dysfunction. The computational model was validated in cortical organotypic slice cultures derived from conditional Scn1aA1783V mice. Pan-neuronal activation of the p.Ala1783V in vitro confirmed a predicted IN firing deficit and revealed an accompanying reduction of interneuronal input resistance while demonstrating normal excitability of pyramidal neurons. Altered input resistance was fed back into the model for further refinement. Taken together these data demonstrate that primary loss of function (LOF) gating properties accompanied by altered membrane characteristics may match effects of full haploinsufficiency on the neuronal level despite maintaining physiological peak current density, thereby causing DS.

2021 ◽  
Author(s):  
N. Layer ◽  
L. Sonnenberg ◽  
E. Pardo González ◽  
J. Benda ◽  
H. Lerche ◽  
...  

AbstractDravet syndrome (DS) is a developmental epileptic encephalopathy mainly caused by functional NaV1.1 haploinsufficiency in interneurons (IN). Recently, a new conditional mouse model expressing the recurrent human p.A1783V missense variant has become available. Here we provide an electrophysiological characterization of this variant in tsA201 cells, revealing both altered voltage-dependence of activation and slow inactivation without reduced sodium peak current density. Simulating IN excitability in a Hodgkin-Huxley one-compartment model suggested surprisingly similar firing deficits for Scn1aA1783V and full haploinsufficiency as caused by heterozygous truncation variants. Impaired NaVA1783V channel activation was predicted to have a significantly larger impact on channel function than altered slow inactivation and is therefore proposed as the main mechanism underlying IN dysfunction. The computational model was validated in cortical organotypic slice cultures derived from conditional Scn1aA1783V mice. Pan-neuronal activation of the p.A1783V variant in vitro confirmed the predicted IN firing deficit while demonstrating normal excitability of pyramidal neurons. Taken together these data demonstrate that despite maintained physiological peak currents density LOF gating properties may match effects of full haploinsufficiency on neuronal level, thereby causing DS.HighlightsNaV1.1A1783V alters voltage-dependence of activation and slow inactivation while not affecting fast inactivation.Depolarizing and hyperpolarizing shifts of activation and slow inactivation curves result in combined channel loss of function (LOF).Simulations of NaV1.1A1783V interneuronal properties indicate reduced action potential firing rates comparable to full SCN1A haploinsufficiency, which is often found in Dravet syndrome.In silico modelling identifies impaired channel activation as the predominant mechanism of channel LOF.Panneuronal induction of Scn1a+/A1783V in a cortical slice culture model confirms restriction of loss of function and its restriction to interneurons.


2013 ◽  
Vol 142 (6) ◽  
pp. 641-653 ◽  
Author(s):  
Linda Volkers ◽  
Kristopher M. Kahlig ◽  
Joost H.G. Das ◽  
Marjan J.A. van Kempen ◽  
Dick Lindhout ◽  
...  

Generalized epilepsy with febrile seizures plus (GEFS+) is an early onset febrile epileptic syndrome with therapeutic responsive (a)febrile seizures continuing later in life. Dravet syndrome (DS) or severe myoclonic epilepsy of infancy has a complex phenotype including febrile generalized or hemiclonic convulsions before the age of 1, followed by intractable myoclonic, complex partial, or absence seizures. Both diseases can result from mutations in the Nav1.1 sodium channel, and initially, seizures are typically triggered by fever. We previously characterized two Nav1.1 mutants—R859H (GEFS+) and R865G (DS)—at room temperature and reported a mixture of biophysical gating defects that could not easily predict the phenotype presentation as either GEFS+ or DS. In this study, we extend the characterization of Nav1.1 wild-type, R859H, and R865G channels to physiological (37°C) and febrile (40°C) temperatures. At physiological temperature, a variety of biophysical defects were detected in both mutants, including a hyperpolarized shift in the voltage dependence of activation and a delayed recovery from fast and slow inactivation. Interestingly, at 40°C we also detected additional gating defects for both R859H and R865G mutants. The GEFS+ mutant R859H showed a loss of function in the voltage dependence of inactivation and an increased channel use-dependency at 40°C with no reduction in peak current density. The DS mutant R865G exhibited reduced peak sodium currents, enhanced entry into slow inactivation, and increased use-dependency at 40°C. Our results suggest that fever-induced temperatures exacerbate the gating defects of R859H or R865G mutants and may predispose mutation carriers to febrile seizures.


2004 ◽  
Vol 11 (04n05) ◽  
pp. 433-442 ◽  
Author(s):  
C. Y. DAI ◽  
Y. PAN ◽  
S. JIANG ◽  
Y. C. ZHOU

The nanocrystalline nickel coating was synthesized by pulse-jet electrodeposition from modified Watts bath. Pulse and jet plating was employed to increase the deposition current density, decrease diffusion layer, increase the nucleation rate and in this case the prepared method would result in fine-grained deposits. Transmission and scanning electron microscopy and X-ray diffraction (XRD) were used to study the microstructure, the surface morphology, the crystal preferred orientation and the variety of the lattice parameter respectively. The influence of pulse parameters, namely peak current density, the duty cycle and pulse frequency on the grain size, surface morphology, crystal orientation and microstructure was studied. The results showed that with increasing peak current density, the deposit grain size was found to decrease markedly in other parameters at constant. However, in our experiment it was found that the grain size increased slightly with increasing pulse frequency. For higher peak current density, the surface morphology was smoother. The crystal orientation progressively changed from an almost random distribution to a strong (111) texture. This means that the peak current density was the dominated parameter to effect the microstructure of electrodeposited nanocrystalline nickel coating. In addition, the lattice parameter for the deposited nickel is calculated from XRD and it is found that the calculated value is less than the lattice parameter for the perfect nickel single crystal. This phenomenon is explained by the crystal lattice mismatch.


2020 ◽  
Vol 861 ◽  
pp. 28-34
Author(s):  
Jie Fang ◽  
Guo Lin Song ◽  
Wei Liu ◽  
Qiu Lin Li

In this work, the microstructure evolution of as-cast NAB under different electropulsing parameters were studied. The microstructure of the electropulsing treatment (EPT) sample was characterized by mircohardness test and optical microscopy. The results show that compared with heat treatment, when the peak current density reaches 5.84×108A/m2 (no significant change in the structure when the peak current density is lower), the β' phase region undergo phase transition in a shorter time. When the peak current density reaches 7.25×108A/m2, the sample is significantly affected by the Joule heating effect, and the κⅢ and κⅣ phases are successively dissolved to form Widmanstätten α structure. As the β' phase increases and the Widmanstätten α structure forms, the hardness value of the microstructure increases by 80%.


2022 ◽  
Vol 14 ◽  
Author(s):  
Tao Su ◽  
Meng-Long Chen ◽  
Li-Hong Liu ◽  
Hen Meng ◽  
Bin Tang ◽  
...  

Objective: An overwhelming majority of the genetic variants associated with genetic disorders are missense. The association between the nature of substitution and the functional alteration, which is critical in determining the pathogenicity of variants, remains largely unknown. With a novel missense variant (E1623A) identified from two epileptic cases, which occurs in the extracellular S3-S4 loop of Nav1.1, we studied functional changes of all latent mutations at residue E1623, aiming to understand the relationship between substitution nature and functional alteration.Methods: Six latent mutants with amino acid substitutions at E1623 were generated, followed by measurements of their electrophysiological alterations. Different computational analyses were used to parameterize the residue alterations.Results: Structural modeling indicated that the E1623 was located in the peripheral region far from the central pore, and contributed to the tight turn of the S3-S4 loop. The E1623 residue exhibited low functional tolerance to the substitutions with the most remarkable loss-of-function found in E1623A, including reduced current density, less steady-state availability of activation and inactivation, and slower recovery from fast inactivation. Correlation analysis between electrophysiological parameters and the parameterized physicochemical properties of different residues suggested that hydrophilicity of side-chain at E1623 might be a crucial contributor for voltage-dependent kinetics. However, none of the established algorithms on the physicochemical variations of residues could well predict changes in the channel conductance property indicated by peak current density.Significance: The results established the important role of the extracellular S3-S4 loop in Nav1.1 channel gating and proposed a possible effect of local conformational loop flexibility on channel conductance and kinetics. Site-specific knowledge of protein will be a fundamental task for future bioinformatics.


Sign in / Sign up

Export Citation Format

Share Document