scholarly journals Hotspot prioritizations show sensitivity to data type

2019 ◽  
Author(s):  
Kari EA Norman ◽  
Ethan P White

ABSTRACTPrioritizing regions for conservation is essential for effectively allocating limited conservation resources. One of the most common approaches to prioritization is identifying regions with the highest biodiversity, or hotspots, typically using global range map data. Range maps are readily available at large scales for an array of taxa, but are also known to differ from local-scale survey data in the same regions. We examined how prioritizations may differ between range map and survey data using the North American Breeding Bird survey (BBS) and BirdLife International range maps as a case study. Hotspot prioritizations were generated for species richness and the richness of rare species at two scales.Total species richness patterns differed substantially between data types with at most a 41% overlap in identified hotspots. Some regions had few or no hotspots for one data type and a significant number for the other. Hotspots for rare species were more similar across the data types with 44% overlap at the larger scale. Future efforts to prioritize areas for conservation should consider differences between local-scale survey data and range maps, match data to the scale of interest, and develop methods to better downscale range map-based prioritizations to the scale of conservation decisions.

2018 ◽  
Author(s):  
Victor Cazalis ◽  
Soumaya Belghali ◽  
Ana S.L. Rodrigues

AbstractProtected areas currently cover about 15% of the global land area, and constitute one of the main tools in biodiversity conservation. Quantifying their effectiveness at protecting species from local decline or extinction involves comparing protected with counterfactual unprotected sites representing “what would have happened to protected sites had they not been protected”. Most studies are based on pairwise comparisons, using neighbour sites to protected areas as counterfactuals, but this choice is often subjective and may be prone to biases. An alternative is to use large-scale biodiversity monitoring datasets, whereby the effect of protected areas is analysed statistically by controlling for landscape differences between protected and unprotected sites, allowing a more targeted and clearly defined measure of the protected areas effect. Here we use the North American Breeding Bird Survey dataset as a case study to investigate the effectiveness of protected areas at conserving bird assemblages. We analysed the effect of protected areas on species richness, on assemblage-level abundance, and on the abundance of individual species by modelling how these metrics relate to the proportion of each site that is protected, while controlling for local habitat, altitude, productivity and for spatial autocorrelation. At the assemblage level, we found almost no relationship between protection and species richness or overall abundance. At the species level, we found that forest species are present in significantly higher abundances within protected forest sites, compared with unprotected forests, with the opposite effect for species that favour open habitats. Hence, even though protected forest assemblages are not richer than those of unprotected forests, they are more typical of this habitat. We also found some evidence that species that avoid human activities tend to be favoured by protection, but found no such effect for regionally declining species. Our results highlight the complexity of assessing protected areas effectiveness, and the necessity of clearly defining the metrics of effectiveness and the controls used in such assessments.


2021 ◽  
Author(s):  
Elizabeth Tokarz ◽  
Richard Condit

AbstractBackgroundTree species with narrow ranges are a conservation concern because heightened extinction risk accompanies their small populations. Assessing risks for these species is challenging, however, especially in tropical flora where their sparse populations seldom appear in traditional plots and inventories. Here, we utilize instead large scale databases that combine tree records from many sources to test hypotheses about where the narrow-range tree species of Panama are concentrated.MethodsAll individual records were collected from public databases, and the range size of each tree species found in Panama was estimated as a polygon around all its locations. Rare species were defined as those with ranges < 20,000 km2. We divided Panama into geographic regions and elevation zones and counted the number of individual records and the species richness in each, separating rare species from all other species.ResultsThe proportion of rare species peaked at elevations above 2000 m, reaching 17.3% of the species recorded. At lower elevation across the country, the proportion was 6-11%, except in the dry Pacific region, where it was 1.5%. Wet forests of the Caribbean coast had 8.4% rare species, slightly higher than other regions. The total number of rare species, however, peaked at mid-elevation, not high elevation, because total species richness was highest there.ConclusionsHigh elevation forests of west Panama have higher endemicity of trees than all low-elevation regions. Dry forests had the lowest endemicity. This supports the notion that montane forests of Central America should be a conservation focus, however, given generally higher diversity at low- to mid-elevation, lowlands are also important habitats for rare species.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0256733
Author(s):  
Alexis Dyan Smith

The Chicago River’s north branch intersects multiple urban land uses, including residential, industrial, commercial, and recreational. The north branch also supports a diversity of birds exploiting a variety of resources and structures along the river as habitat. From three breeding seasons of point count surveys, I assess the breeding bird communities in four different sections, representing four different restoration or management styles. These four river sections are also very different with regards to the surrounding neighborhood demographics. These data serve as both a baseline for future studies to evaluate restoration projects along the Chicago River, and as a snapshot to compare bird diversity and community composition between these river sections given current conditions. Unsurprisingly, the section of the river with the most extensive and longest established restoration effort had the highest species richness (number of species) of native birds. In terms of aquatic and riparian birds, however, that section was comparable to river sections with much less management in measures of both species richness and species composition. I discuss ways that river restoration efforts can be sensitive to demographic context, to avoid contributing to eco-gentrification and displacement.


2020 ◽  
Author(s):  
David G. Angeler ◽  
Caleb P. Roberts ◽  
Dirac Twidwell ◽  
Craig R. Allen

AbstractHuman activity causes biome shifts that alter biodiversity and spatial resilience patterns, ultimately challenging conservation. Rare species, often considered vulnerable to change and endangered, can be a critical element of resilience by providing adaptive capacity in response to disturbances. However, little is known about changes in rarity and dominance patterns of communities once a biome transitions into a novel spatial regime, and how this affects conservation. We used time series modeling to identify species rarity and dominance patterns in an expanding terrestrial (southern) spatial regime in the North American Great Plains and another (northern) regime that will become encroached by the southern regime in the near future. In this approach, presumably rare and abundant species show stochastic and deterministic dynamics, respectively. We specifically assessed how stochastic species of the northern spatial regime influence the resilience and adaptive capacity of a novel spatial regime once it has been encroached by the southern regime by either becoming deterministic or staying stochastic. Using 47 years (1968 – 2014) of breeding bird survey data and a space-for-time substitution, we found half of the stochastic species from the northern regime to be either deterministic or stochastic in the southern regime. However, the overall contribution of these species to the community of the southern regime was low, manifested in marginal contributions to resilience and adaptive capacity of this regime. Also, none of these species were of conservation concern, suggesting limited need for revised species conservation action in the novel spatial regime. From a systemic perspective our result suggest that while stochastic species can potentially compensate for the loss of dominant species after disturbances and maintain the system in its current regime, they may only marginally contribute to resilience and adaptive capacity in a new spatial regime after fundamental ecological changes have occurred.


2019 ◽  
Author(s):  
Federico Morelli ◽  
Yanina

ContextThe negative association between elevation and species richness is a well-recognized pattern in macro-ecology. ObjectivesThe aim of this study was to investigate changes in functional evenness of breeding bird communities along an elevation gradient in Europe. MethodsUsing the bird data from the EBCC Atlas of European Breeding Birds we estimated an index of functional evenness which can be assumed as a measure of the potential resilience of communities.ResultsOur findings confirm the existence of a negative association between elevation and bird species richness in all European eco regions. However, we also explored a novel aspect of this relationship, important for conservation: Our findings provide evidence at large spatial scale of a negative association between the functional evenness (potential community resilience) and elevation, independent of the eco region. We also found that the Natura2000 protected areas covers the territory most in need of protection, those characterized by bird communities with low potential resilience, in hilly and mountainous areas.ConclusionsThese results draw attention to European areas occupied by bird communities characterized by a potential lower capacity to respond to strong ecological changes, and, therefore, potentially more exposed to risks for conservation.


2011 ◽  
pp. 101-116 ◽  
Author(s):  
B. Yu. Teteryuk

The results of a sintaxonomical study of plant communities of the Yamozero lake (the North-East of the European part of Russia) are presented. The diversity of the aquatic and helophytic vegetation of the Yamozero lake consists of 16 associations and 2 communities of 6 unions, 4 orders and 2 classes of the floristic classification: Potamogetonetea (7 associations, 2 communities), Phragmito-Magnocaricetea (9 associations). Many of described associations are widely distributed in the Central and the Eastern Europe. Some associations have the boundaries of their ranges. Some communities include 2 rare species of regional level: Isoetes setacea and Sagittaria natans.


Diversity ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 170
Author(s):  
Gladys N. Benitez ◽  
Glenn D. Aguilar ◽  
Dan Blanchon

The spatial distribution of corticolous lichens on the iconic New Zealand pōhutukawa (Metrosideros excelsa) tree was investigated from a survey of urban parks and forests across the city of Auckland in the North Island of New Zealand. Lichens were identified from ten randomly selected trees at 20 sampling sites, with 10 sites classified as coastal and another 10 as inland sites. Lichen data were correlated with distance from sea, distance from major roads, distance from native forests, mean tree DBH (diameter at breast height) and the seven-year average of measured NO2 over the area. A total of 33 lichen species were found with coastal sites harboring significantly higher average lichen species per tree as well as higher site species richness. We found mild hotspots in two sites for average lichen species per tree and another two separate sites for species richness, with all hotspots at the coast. A positive correlation between lichen species richness and DBH was found. Sites in coastal locations were more similar to each other in terms of lichen community composition than they were to adjacent inland sites and some species were only found at coastal sites. The average number of lichen species per tree was negatively correlated with distance from the coast, suggesting that the characteristic lichen flora found on pōhutukawa may be reliant on coastal microclimates. There were no correlations with distance from major roads, and a slight positive correlation between NO2 levels and average lichen species per tree.


2014 ◽  
Vol 28 (3) ◽  
pp. 382-391 ◽  
Author(s):  
Vanessa Leite Rezende ◽  
Pedro V. Eisenlohr ◽  
André Luís de Gasper ◽  
Alexander Christian Vibrans ◽  
Ary Teixeira de Oliveira-Filho

Sign in / Sign up

Export Citation Format

Share Document