scholarly journals Co-evolutionary analysis accurately predicts details of interactions between the Integrator complex subunits

2019 ◽  
Author(s):  
Bernard Fongang ◽  
Yingjie Zhu ◽  
Eric J. Wagner ◽  
Andrzej Kudlicki ◽  
Maga Rowicka

ABSTRACTSolving the structure of large, multi-subunit complexes is difficult despite recent advances in cryoEM, due to remaining challenges to express and purify complex subunits. Computational approaches that predict protein-protein interactions, including Direct Coupling Analysis (DCA), represent an attractive alternative to dissect interactions within protein complexes. However, due to high computational complexity and high false positive rate they are applicable only to small proteins. Here, we present a modified DCA to predict residues and domains involved in interactions of large proteins. To reduce false positive levels and increase accuracy of prediction, we use local Gaussian averaging and predicted secondary structure elements. As a proof-of-concept, we apply our method to two Integrator subunits, INTS9 and INTS11, which form a heterodimeric structure previously solved by crystallography. We accurately predict the domains of INTS9/11 interaction. We then apply this approach to predict the interaction domains of two complexes whose structure is currently unknown: 1) The heterodimer formed by the Cleavage and Polyadenylation Specificity Factor 100-kD (CPSF100) and 73-kD (CPSF73); 2) The heterotrimer formed by INTS4/9/11. Our predictions of interactions within these two complexes are supported by experimental data, demonstrating that our modified DCA is a useful method for predicting interactions and can easily be applied to other complexes.

2016 ◽  
Author(s):  
Xiaotong Yao ◽  
Shuvadeep Maity ◽  
Shashank Gandhi ◽  
Marcin Imielenski ◽  
Christine Vogel

AbstractPost-translational modifications by the Small Ubiquitin-like Modifier (SUMO) are essential for diverse cellular functions. Large-scale experiment and sequence-based predictions have identified thousands of SUMOylated proteins. However, the overlap between the datasets is small, suggesting many false positives with low functional relevance. Therefore, we integrated ~800 sequence features and protein characteristics such as cellular function and protein-protein interactions in a machine learning approach to score likely functional SUMOylation events (iSUMO). iSUMO is trained on a total of 24 large-scale datasets, and it predicts 2,291 and 706 SUMO targets in human and yeast, respectively. These estimates are five times higher than what existing sequence-based tools predict at the same 5% false positive rate. Protein-protein and protein-nucleic acid interactions are highly predictive of protein SUMOylation, supporting a role of the modification in protein complex formation. We note the marked prevalence of SUMOylation amongst RNA-binding proteins. We validate iSUMO predictions by experimental or other evidence. iSUMO therefore represents a comprehensive tool to identify high-confidence, functional SUMOylation events for human and yeast.


2003 ◽  
Vol 31 (5) ◽  
pp. 985-989 ◽  
Author(s):  
W.I. Burkitt ◽  
P.J. Derrick ◽  
D. Lafitte ◽  
I. Bronstein

Electrospray ionization has made possible the transference of non-covalently bound complexes from solution phase to high vacuum. In the process, a complex acquires a net charge and becomes amenable to measurement by MS. FTICR (Fourier-transform ion cyclotron resonance) MS allows these ions to be measured with sufficiently high resolution for the isotopomers of complexes of small proteins to be resolved from each other (true for complexes up to about 100 kDa for the most powerful FTICR instruments), which is of crucial significance in the interpretation of spectra. Results are presented for members of the S100 family of proteins, demonstrating how non-covalently bound complexes can be distinguished unambiguously from covalently bound species. Consideration relevant both to determination of binding constants in solution from the gas-phase results and to the elucidation of protein folding and unfolding in solution are discussed. The caveats inherent to the basic approach of using electrospray and MS to characterize protein complexes are weighed and evaluated.


2019 ◽  
Author(s):  
Isak Johansson-Åkhe ◽  
Claudio Mirabello ◽  
Björn Wallner

AbstractMotivationInteractions between proteins and peptides or peptide-like intrinsically disordered regions are involved in many important biological processes, such as gene expression and cell life-cycle regulation. Experimentally determining the structure of such interactions is time-consuming, and because of the disordered nature of the ligand, the interactions are especially difficult to predict through software, requiring specialized solutions. Although several prediction-methods exist, most are limited in performance or availability.ResultsInterPep2 is a freely available method for predicting the structure of peptide-protein interactions. We have previously shown that structural templates can be used to accurately predict peptide-protein binding sites, and that using templates from regular protein-protein interactions will increase the number of sites found. Here, we show that the same principle can be extended to dock the peptide to the binding surface using InterPep2. A key component of InterPep2 is the ability to score plausible interaction templates using a RandomForest trained to predict the DockQ-score using sequence and structural features. InterPep2 is tested on a difficult dataset of 251 peptide-protein complexes, where it correctly positions 136 (54%) at the correct site compared to 114 (45%) for the second best method. Analyzing the confidence score InterPep2 recalls more true positives across all specificity levels compared to the second best method, for example at 10% False Positive Rate it correctly identifies 59% of the complexes compared to 44% for the second best method.AvailabilityThe program is available from: http://wallnerlab.org/InterPepContactBjörn Wallner [email protected]


2002 ◽  
Vol 41 (01) ◽  
pp. 37-41 ◽  
Author(s):  
S. Shung-Shung ◽  
S. Yu-Chien ◽  
Y. Mei-Due ◽  
W. Hwei-Chung ◽  
A. Kao

Summary Aim: Even with careful observation, the overall false-positive rate of laparotomy remains 10-15% when acute appendicitis was suspected. Therefore, the clinical efficacy of Tc-99m HMPAO labeled leukocyte (TC-WBC) scan for the diagnosis of acute appendicitis in patients presenting with atypical clinical findings is assessed. Patients and Methods: Eighty patients presenting with acute abdominal pain and possible acute appendicitis but atypical findings were included in this study. After intravenous injection of TC-WBC, serial anterior abdominal/pelvic images at 30, 60, 120 and 240 min with 800k counts were obtained with a gamma camera. Any abnormal localization of radioactivity in the right lower quadrant of the abdomen, equal to or greater than bone marrow activity, was considered as a positive scan. Results: 36 out of 49 patients showing positive TC-WBC scans received appendectomy. They all proved to have positive pathological findings. Five positive TC-WBC were not related to acute appendicitis, because of other pathological lesions. Eight patients were not operated and clinical follow-up after one month revealed no acute abdominal condition. Three of 31 patients with negative TC-WBC scans received appendectomy. They also presented positive pathological findings. The remaining 28 patients did not receive operations and revealed no evidence of appendicitis after at least one month of follow-up. The overall sensitivity, specificity, accuracy, positive and negative predictive values for TC-WBC scan to diagnose acute appendicitis were 92, 78, 86, 82, and 90%, respectively. Conclusion: TC-WBC scan provides a rapid and highly accurate method for the diagnosis of acute appendicitis in patients with equivocal clinical examination. It proved useful in reducing the false-positive rate of laparotomy and shortens the time necessary for clinical observation.


1993 ◽  
Vol 32 (02) ◽  
pp. 175-179 ◽  
Author(s):  
B. Brambati ◽  
T. Chard ◽  
J. G. Grudzinskas ◽  
M. C. M. Macintosh

Abstract:The analysis of the clinical efficiency of a biochemical parameter in the prediction of chromosome anomalies is described, using a database of 475 cases including 30 abnormalities. A comparison was made of two different approaches to the statistical analysis: the use of Gaussian frequency distributions and likelihood ratios, and logistic regression. Both methods computed that for a 5% false-positive rate approximately 60% of anomalies are detected on the basis of maternal age and serum PAPP-A. The logistic regression analysis is appropriate where the outcome variable (chromosome anomaly) is binary and the detection rates refer to the original data only. The likelihood ratio method is used to predict the outcome in the general population. The latter method depends on the data or some transformation of the data fitting a known frequency distribution (Gaussian in this case). The precision of the predicted detection rates is limited by the small sample of abnormals (30 cases). Varying the means and standard deviations (to the limits of their 95% confidence intervals) of the fitted log Gaussian distributions resulted in a detection rate varying between 42% and 79% for a 5% false-positive rate. Thus, although the likelihood ratio method is potentially the better method in determining the usefulness of a test in the general population, larger numbers of abnormal cases are required to stabilise the means and standard deviations of the fitted log Gaussian distributions.


2019 ◽  
Author(s):  
Amanda Kvarven ◽  
Eirik Strømland ◽  
Magnus Johannesson

Andrews & Kasy (2019) propose an approach for adjusting effect sizes in meta-analysis for publication bias. We use the Andrews-Kasy estimator to adjust the result of 15 meta-analyses and compare the adjusted results to 15 large-scale multiple labs replication studies estimating the same effects. The pre-registered replications provide precisely estimated effect sizes, which do not suffer from publication bias. The Andrews-Kasy approach leads to a moderate reduction of the inflated effect sizes in the meta-analyses. However, the approach still overestimates effect sizes by a factor of about two or more and has an estimated false positive rate of between 57% and 100%.


2019 ◽  
Vol 26 (21) ◽  
pp. 3890-3910 ◽  
Author(s):  
Branislava Gemovic ◽  
Neven Sumonja ◽  
Radoslav Davidovic ◽  
Vladimir Perovic ◽  
Nevena Veljkovic

Background: The significant number of protein-protein interactions (PPIs) discovered by harnessing concomitant advances in the fields of sequencing, crystallography, spectrometry and two-hybrid screening suggests astonishing prospects for remodelling drug discovery. The PPI space which includes up to 650 000 entities is a remarkable reservoir of potential therapeutic targets for every human disease. In order to allow modern drug discovery programs to leverage this, we should be able to discern complete PPI maps associated with a specific disorder and corresponding normal physiology. Objective: Here, we will review community available computational programs for predicting PPIs and web-based resources for storing experimentally annotated interactions. Methods: We compared the capacities of prediction tools: iLoops, Struck2Net, HOMCOS, COTH, PrePPI, InterPreTS and PRISM to predict recently discovered protein interactions. Results: We described sequence-based and structure-based PPI prediction tools and addressed their peculiarities. Additionally, since the usefulness of prediction algorithms critically depends on the quality and quantity of the experimental data they are built on; we extensively discussed community resources for protein interactions. We focused on the active and recently updated primary and secondary PPI databases, repositories specialized to the subject or species, as well as databases that include both experimental and predicted PPIs. Conclusion: PPI complexes are the basis of important physiological processes and therefore, possible targets for cell-penetrating ligands. Reliable computational PPI predictions can speed up new target discoveries through prioritization of therapeutically relevant protein–protein complexes for experimental studies.


2020 ◽  
Vol 27 (37) ◽  
pp. 6306-6355 ◽  
Author(s):  
Marian Vincenzi ◽  
Flavia Anna Mercurio ◽  
Marilisa Leone

Background:: Many pathways regarding healthy cells and/or linked to diseases onset and progression depend on large assemblies including multi-protein complexes. Protein-protein interactions may occur through a vast array of modules known as protein interaction domains (PIDs). Objective:: This review concerns with PIDs recognizing post-translationally modified peptide sequences and intends to provide the scientific community with state of art knowledge on their 3D structures, binding topologies and potential applications in the drug discovery field. Method:: Several databases, such as the Pfam (Protein family), the SMART (Simple Modular Architecture Research Tool) and the PDB (Protein Data Bank), were searched to look for different domain families and gain structural information on protein complexes in which particular PIDs are involved. Recent literature on PIDs and related drug discovery campaigns was retrieved through Pubmed and analyzed. Results and Conclusion:: PIDs are rather versatile as concerning their binding preferences. Many of them recognize specifically only determined amino acid stretches with post-translational modifications, a few others are able to interact with several post-translationally modified sequences or with unmodified ones. Many PIDs can be linked to different diseases including cancer. The tremendous amount of available structural data led to the structure-based design of several molecules targeting protein-protein interactions mediated by PIDs, including peptides, peptidomimetics and small compounds. More studies are needed to fully role out, among different families, PIDs that can be considered reliable therapeutic targets, however, attacking PIDs rather than catalytic domains of a particular protein may represent a route to obtain selective inhibitors.


Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1894
Author(s):  
Chun Guo ◽  
Zihua Song ◽  
Yuan Ping ◽  
Guowei Shen ◽  
Yuhei Cui ◽  
...  

Remote Access Trojan (RAT) is one of the most terrible security threats that organizations face today. At present, two major RAT detection methods are host-based and network-based detection methods. To complement one another’s strengths, this article proposes a phased RATs detection method by combining double-side features (PRATD). In PRATD, both host-side and network-side features are combined to build detection models, which is conducive to distinguishing the RATs from benign programs because that the RATs not only generate traffic on the network but also leave traces on the host at run time. Besides, PRATD trains two different detection models for the two runtime states of RATs for improving the True Positive Rate (TPR). The experiments on the network and host records collected from five kinds of benign programs and 20 famous RATs show that PRATD can effectively detect RATs, it can achieve a TPR as high as 93.609% with a False Positive Rate (FPR) as low as 0.407% for the known RATs, a TPR 81.928% and FPR 0.185% for the unknown RATs, which suggests it is a competitive candidate for RAT detection.


Sign in / Sign up

Export Citation Format

Share Document