scholarly journals Cell growth kinetics and accumulation of secondary metabolite of Bletilla striata Rchb.f. using cell suspension culture

2019 ◽  
Author(s):  
Yinchi Pan ◽  
Delin Xu ◽  
Shiji Xiao ◽  
Zhongjie Chen ◽  
Surendra Sarsaiya ◽  
...  

AbstractBletilla striata (Orchidaceae) is a well-recognized endangered medicinal plant due to inadequate natural reproduction with high market worth. To evaluate the cell growth kinetics and accumulation of secondary metabolites (SMs), the cell suspension culture is proved to be a valuable approach for acquiring the high yield of medicinal parts. An effective cell suspension culture for obtaining B. striata cell growth and its SMs was in vitro induction of callus from B. striata seeds. The cell growth kinetics and accumulation of SMs were analyzed using the mathematical model. Results cell growth kinetic model revealed that the growth curve of B. striata suspension cells was curved as sigmoid shape, indicating the changes of the growth curve of suspension cells. Improved Murashige and Skoog cell growth medium was the utmost favorable medium for B. striata callus formation with the highest cell growth during the stationary phase of cultivation period, the cell growth acceleration was started after 7 days and thereafter gradually decrease at 24 day and then reached to highest at 36 day of cultivation period in both dry weight and fresh weight. The coelonin concentration was peak during exponential growth stage and decreased afterward at the stationary phase in the cell suspension culture. The maximum content of coelonin (about 0.3323 mg/g cell dry weight) was observed on the 18th day of the cultivation cycle while the dactylorhin A and militarine reached highest at 24 day, and p-hydroxybenzyl alcohol at 39 day. This investigation also laid a foundation for multi-mathematical model to better describe the accumulation variation of SMs. The production of SMs had shown great specificity during cells growth and development. This research provided a well-organized way to more accumulation and production of SMs, on scale-up biosynthesis in B. striata cell suspension culture.

Rodriguésia ◽  
2021 ◽  
Vol 72 ◽  
Author(s):  
Ivan Gonçalves Ribeiro ◽  
Tatiana Carvalho de Castro ◽  
Marsen Garcia Pinto Coelho ◽  
Norma Albarello

Abstract Medicinal plants are an important therapeutic option for a large share of the world’s population. To establish an in vitro culture system for the production of secondary metabolites from Hovenia dulcis, we studied the effect of auxins, cytokinins, absence of light, and silver nitrate on the development of friable callus. Callus cultures were established for the first time and used to obtain cell suspension cultures. Supplementation with KIN (Kinetin) produced calli with both compact and friable areas, while the addition of TDZ (Thidiazuron) only produced compact callus. The maintenance of cultures in the dark induced a slight enhancement on friability when the auxin PIC (Picloram) was present in the culture medium. The addition of silver nitrate promoted the formation of friable calli. Dry weight analysis showed no significant differences in biomass growth, and, therefore, 2.0 mg.L-1 was considered the most suitable treatment. The presence of silver nitrate was not required for the establishment of cell suspension cultures. Dry weight analysis of cell suspensions showed higher biomass production in the absence of silver nitrate. PIC promoted 100% of cell suspension culture formation in the absence of silver nitrate, and higher biomass production was observed with the lowest concentration (0.625 mg.L-1). No morphological differences were observed among the different concentrations of PIC. Phytochemical screening showed the presence of saponins, flavonoids, flavonols and catechins in the extracts obtained from H. dulcis calli. These results show that the cell cultures herein established are potential sources for the production of H. dulcis secondary metabolites of medicinal interest.


2007 ◽  
Vol 62 (5-6) ◽  
pp. 410-416 ◽  
Author(s):  
Ying Yang ◽  
Feng He ◽  
Longjiang Yu ◽  
Xuehong Chen ◽  
Jing Lei ◽  
...  

The effect of water deficit on flavonoid production and physiological parameters characteristic for oxidative stress were studied in a cell suspension culture of Glycyrrhiza inflata Batal to investigate its drought tolerance. The result indicated that appropriate water deficit enhanced biomass accumulation of 27.1 g L-1 and flavonoid production of 151.5 mg L-1, which was about 2-fold and 1.5-fold of the control, respectively. But it decreased the water content. Drought stress led to hydrogen peroxide accumulation more than in the control. Moreover, under drought conditions, malondialdehyde content, the activities of catalase and peroxidase increased to a greater extent than the control, and each reached a maximum value of 91.3 μmol g-1 dry weight, 85.6 U and 1951 U g-1 dry weight per min, which was 1.5-, 1.7- and 3.7-fold of the control, respectively. All above showed that appropriate water deficit could activate the antioxidative defense enzymes system to maintain stability in plants subjected to drought stress. On the contrary, the activity of phenylalanine ammonia lyase of the control increased in company with the biosynthesis of flavonoids, which indicated that phenylalanine ammonia lyase might play an important role in the path of the biosynthesis of flavonoids.


2018 ◽  
Vol 42 (5) ◽  
pp. 464-473 ◽  
Author(s):  
Poornananda Madhava Naik ◽  
Jameel Mohammed Al-Khayri

ABSTRACT Date palm accumulates a wide range of secondary metabolites high in nutritional and therapeutic value. In the present study, date palm (Phoenix dactylifera L., cv. Shaishi) shoot-tip-induced callus was used to establish cell suspension cultures in Murashige and Skoog (MS) liquid medium containing 1.5 mg L-1 2-isopentenyladenine (2iP) and 10 mg L-1 naphthaleneacetic acid (NAA). To study the growth kinetics, cultures were maintained for 12 weeks during which weekly measurements were carried out to determine the biomass accumulation based on packed cell volume (%), fresh weight and dry weight (g). In addition, weekly determination of polyphenols (catechin, caffeic acid, kaempferol, and apigenin) was carried out using high performance liquid chromatography (HPLC). The 11-week-old culture was found highest in the production of biomass (62.9 g L-1 fresh weight and 7.6 g L-1 dry weight) and polyphenols (catechin-155.9 µg L-1, caffeic acid-162.7 µg L-1, kaempferol-89.7 µg L-1, and apigenin-242.7 µg L-1) from the cell suspension cultures. This is the first report on the production of polyphenols from the cell suspension culture of date palm. This study facilitates further development of large-scale production of polyphenols and the utilization of bioreactors.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 414
Author(s):  
Antonio Bernabé-Antonio ◽  
Alejandro Sánchez-Sánchez ◽  
Antonio Romero-Estrada ◽  
Juan Carlos Meza-Contreras ◽  
José Antonio Silva-Guzmán ◽  
...  

Eysenhardtia platycarpa (Fabaceae) is a medicinal plant used in Mexico. Biotechnological studies of its use are lacking. The objective of this work was to establish a cell suspension culture (CSC) of E. platycarpa, determine the phytochemical constituents by spectrophotometric and gas chromatography‒mass spectrometry (GC‒MS) methods, evaluate its antifungal activity, and compare them with the intact plant. Friable callus and CSC were established with 2 mg/L 1-naphthaleneacetic acid plus 0.1 mg/L kinetin. The highest total phenolics of CSC was 15.6 mg gallic acid equivalents (GAE)/g dry weight and the total flavonoids content ranged from 56.2 to 104.1 µg quercetin equivalents (QE)/g dry weight. The GC‒MS analysis showed that the dichloromethane extracts of CSC, sapwood, and heartwood have a high amount of hexadecanoic acid (22.3–35.3%) and steroids (13.5–14.7%). Heartwood and sapwood defatted hexane extracts have the highest amount of stigmasterol (~23.4%) and β-sitosterol (~43%), and leaf extracts presented β-amyrin (16.3%). Methanolic leaf extracts showed mostly sugars and some polyols, mainly D-pinitol (74.3%). Compared with the intact plant, dichloromethane and fatty hexane extracts of CSC exhibited percentages of inhibition higher for Sclerotium cepivorum: 71.5% and 62.0%, respectively. The maximum inhibition for Rhizoctonia solani was with fatty hexane extracts of the sapwood (51.4%). Our study suggests that CSC extracts could be used as a possible complementary alternative to synthetic fungicides.


Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4669
Author(s):  
Jameel Mohammed Al-Khayri ◽  
Poornananda Madhava Naik

Plants that synthesize bioactive compounds that have high antioxidant value and elicitation offer a reliable in vitro technique to produce important nutraceutical compounds. The objective of this study is to promote the biosynthesis of these phenolic compounds on a large scale using elicitors in date palm cell suspension culture. Elicitors such as pectin, yeast extract (YE), salicylic acid (SA), cadmium chloride (CdCl2), and silver nitrate (AgNO3) at 50, 100, and 200 mg/L concentrations are used. The effects of elicitors on cell culture were determined in terms of biomass [packed cell volume (PCV), fresh and dry weight], antioxidant activity, and phenolic compounds (catechin, caffeic acid, kaempferol, apigenin) were determined using high-performance liquid chromatography (HPLC). Results revealed that enhanced PCV (12.3%), total phenolic content [317.9 ± 28.7 mg gallic acid equivalents (GAE)/100 g of dry weight (DW)], and radical scavenging activity (86.0 ± 4.5%) were obtained in the 50 mg/L SA treated cell culture of Murashige and Skoog (MS) medium. The accumulation of optimum catechin (26.6 ± 1.3 µg/g DW), caffeic acid (31.4 ± 3.8 µg/g DW), and kaempferol (13.6 ± 1.6 µg/g DW) was found in the 50 mg/L SA-treated culture when compared to the control. These outcomes could be of great importance in the nutraceutical and agronomic industries.


Sign in / Sign up

Export Citation Format

Share Document