scholarly journals Conformational Transition Pathways in Major Facilitator Superfamily Transporters

2019 ◽  
Author(s):  
Dylan Ogden ◽  
Kalyan Immadisetty ◽  
Mahmoud Moradi

AbstractMajor facilitator superfamily (MFS) of transporters consists of three classes of membrane transporters: symporters, uniporters, and antiporters. Despite such diverse functions, MFS transporters are believed to undergo similar conformational changes within their distinct transport cycles. While the similarities between conformational changes are noteworthy, the differences are also important since they could potentially explain the distinct functions of symporters, uniporters, and antiporters of MFS superfamily. We have performed a variety of equilibrium, non-equilibrium, biased, and unbiased all-atom molecular dynamics (MD) simulations of bacterial proton-coupled oligopeptide transporter GkPOT, glucose transporter 1 (GluT1), and glycerol-3-phosphate transporter (GlpT) to compare the similarities and differences of the conformational dynamics of three different classes of transporters. Here we have simulated the apo protein in an explicit membrane environment. Our results suggest a very similar conformational transition involving interbundle salt-bridge formation/disruption coupled with the orientation changes of transmembrane (TM) helices, specifically H1/H7 and H5/H11, resulting in an alternation in the accessibility of water at the cyto- and periplasmic gates.

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Ruyu Jia ◽  
Chloe Martens ◽  
Mrinal Shekhar ◽  
Shashank Pant ◽  
Grant A. Pellowe ◽  
...  

AbstractProton-coupled transporters use transmembrane proton gradients to power active transport of nutrients inside the cell. High-resolution structures often fail to capture the coupling between proton and ligand binding, and conformational changes associated with transport. We combine HDX-MS with mutagenesis and MD simulations to dissect the molecular mechanism of the prototypical transporter XylE. We show that protonation of a conserved aspartate triggers conformational transition from outward-facing to inward-facing state. This transition only occurs in the presence of substrate xylose, while the inhibitor glucose locks the transporter in the outward-facing state. MD simulations corroborate the experiments by showing that only the combination of protonation and xylose binding, and not glucose, sets up the transporter for conformational switch. Overall, we demonstrate the unique ability of HDX-MS to distinguish between the conformational dynamics of inhibitor and substrate binding, and show that a specific allosteric coupling between substrate binding and protonation is a key step to initiate transport.


2020 ◽  
Author(s):  
Ruyu Jia ◽  
Chloe Martens ◽  
Mrinal Shekhar ◽  
Shashank Pant ◽  
Grant A. Pellowe ◽  
...  

AbstractProton-coupled transporters use transmembrane proton gradients to power active transport of nutrients inside the cell. High-resolution structures often fail to capture the coupling between proton and ligand binding, and conformational changes associated with transport. We combine HDX-MS with mutagenesis and MD simulations to dissect the molecular mechanism of the prototypical transporter XylE. We show that protonation of a conserved aspartate triggers conformational transition from outward-facing to inward-facing state. This transition only occurs in the presence of substrate xylose, while the inhibitor glucose locks the transporter in the outward-facing state. MD simulations corroborate the experiments by showing that only the combination of protonation and xylose binding, and not glucose, sets up the transporter for conformational switch. Overall, we demonstrate the unique ability of HDX-MS to distinguish between the conformational dynamics of inhibitor and substrate binding, and show that a specific allosteric coupling between substrate binding and protonation is a key step to initiate transport.


2017 ◽  
Author(s):  
Jana Shen ◽  
Zhi Yue ◽  
Helen Zgurskaya ◽  
Wei Chen

AcrB is the inner-membrane transporter of E. coli AcrAB-TolC tripartite efflux complex, which plays a major role in the intrinsic resistance to clinically important antibiotics. AcrB pumps a wide range of toxic substrates by utilizing the proton gradient between periplasm and cytoplasm. Crystal structures of AcrB revealed three distinct conformational states of the transport cycle, substrate access, binding and extrusion, or loose (L), tight (T) and open (O) states. However, the specific residue(s) responsible for proton binding/release and the mechanism of proton-coupled conformational cycling remain controversial. Here we use the newly developed membrane hybrid-solvent continuous constant pH molecular dynamics technique to explore the protonation states and conformational dynamics of the transmembrane domain of AcrB. Simulations show that both Asp407 and Asp408 are deprotonated in the L/T states, while only Asp408 is protonated in the O state. Remarkably, release of a proton from Asp408 in the O state results in large conformational changes, such as the lateral and vertical movement of transmembrane helices as well as the salt-bridge formation between Asp408 and Lys940 and other sidechain rearrangements among essential residues.Consistent with the crystallographic differences between the O and L protomers, simulations offer dynamic details of how proton release drives the O-to-L transition in AcrB and address the controversy regarding the proton/drug stoichiometry. This work offers a significant step towards characterizing the complete cycle of proton-coupled drug transport in AcrB and further validates the membrane hybrid-solvent CpHMD technique for studies of proton-coupled transmembrane proteins which are currently poorly understood. <p><br></p>


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Raghavendar Reddy Sanganna Gari ◽  
Joel José Montalvo‐Acosta ◽  
George R. Heath ◽  
Yining Jiang ◽  
Xiaolong Gao ◽  
...  

AbstractConformational changes in ion channels lead to gating of an ion-conductive pore. Ion flux has been measured with high temporal resolution by single-channel electrophysiology for decades. However, correlation between functional and conformational dynamics remained difficult, lacking experimental techniques to monitor sub-millisecond conformational changes. Here, we use the outer membrane protein G (OmpG) as a model system where loop-6 opens and closes the β-barrel pore like a lid in a pH-dependent manner. Functionally, single-channel electrophysiology shows that while closed states are favored at acidic pH and open states are favored at physiological pH, both states coexist and rapidly interchange in all conditions. Using HS-AFM height spectroscopy (HS-AFM-HS), we monitor sub-millisecond loop-6 conformational dynamics, and compare them to the functional dynamics from single-channel recordings, while MD simulations provide atomistic details and energy landscapes of the pH-dependent loop-6 fluctuations. HS-AFM-HS offers new opportunities to analyze conformational dynamics at timescales of domain and loop fluctuations.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 561
Author(s):  
Koudkeo Phommachan ◽  
Chansom Keo-oudone ◽  
Mochamad Nurcholis ◽  
Nookhao Vongvilaisak ◽  
Mingkhuan Chanhming ◽  
...  

Candida tropicalis, a xylose-fermenting yeast, has the potential for converting cellulosic biomass to ethanol. Thermotolerant C. tropicalis X-17, which was isolated in Laos, was subjected to repetitive long-term cultivation with a gradual increase in temperature (RLCGT) in the presence of a high concentration of glucose, which exposed cells to various stresses in addition to the high concentration of glucose and high temperatures. The resultant adapted strain demonstrated increased tolerance to ethanol, furfural and hydroxymethylfurfural at high temperatures and displayed improvement in fermentation ability at high glucose concentrations and xylose-fermenting ability. Transcriptome analysis revealed the up-regulation of a gene for a glucose transporter of the major facilitator superfamily and genes for stress response and cell wall proteins. Additionally, hydropathy analysis revealed that three genes for putative membrane proteins with multiple membrane-spanning segments were also up-regulated. From these findings, it can be inferred that the up-regulation of genes, including the gene for a glucose transporter, is responsible for the phenotype of the adaptive strain. This study revealed part of the mechanisms of fermentability at high glucose concentrations in C. tropicalis and the results of this study suggest that RLCGT is an effective procedure for improving multistress tolerance.


2006 ◽  
Vol 188 (15) ◽  
pp. 5635-5639 ◽  
Author(s):  
Nadejda Sigal ◽  
Shahar Molshanski-Mor ◽  
Eitan Bibi

ABSTRACT The largest family of solute transporters (major facilitator superfamily [MFS]) includes proton-motive-force-driven secondary transporters. Several characterized MFS transporters utilize essential acidic residues that play a critical role in the energy-coupling mechanism during transport. Surprisingly, we show here that no single acidic residue plays an irreplaceable role in the Escherichia coli secondary multidrug transporter MdfA.


2020 ◽  
Author(s):  
Yangang Pan ◽  
Luda S. Shlyakhtenko ◽  
Yuri L. Lyubchenko

AbstractViral infectivity factor (Vif) is a protein that is essential for the replication of the HIV-1 virus. The key function of Vif is to disrupt the antiviral activity of APOBEC3 proteins, which mutate viral nucleic acids. Inside the cell, Vif binds to the host cell proteins Elongin-C, Elongin-B, and CBF-β, forming a four-protein complex called VCBC. The structure of VCBC in complex with the Cullin5 (Cul5) protein has been solved by X-ray crystallography, and recently, using molecular dynamic (MD) simulations, the dynamics of VCBC and VCBC-Cul5 complexes were characterized. Here, we applied time-lapse high-speed atomic force microscopy (HS-AFM) to visualize the conformational changes of the VCBC complex. We determined the three most favorable conformations of the VCBC complex, which we identified as triangle, dumbbell, and globular structures. In addition, we characterized the dynamics of each of these structures. While our data show a very dynamic behavior for all these structures, we found the triangle and dumbbell structures to be the most dynamic. These findings provide insight into the structure and dynamics of the VCBC complex and support further research into the improvement of HIV treatment, as Vif is essential for virus survival in the cell.


2018 ◽  
Author(s):  
Z. Faidon Brotzakis ◽  
Michele Parrinello

AbstractProtein conformational transitions often involve many slow degrees of freedom. Their knowledge would give distinctive advantages since it provides chemical and mechanistic insight and accelerates the convergence of enhanced sampling techniques that rely on collective variables. In this study, we implemented a recently developed variational approach to conformational dynamics metadynamics to the conformational transition of the moderate size protein, L99A T4 Lysozyme. In order to find the slow modes of the system we combined data coming from NMR experiments as well as short MD simulations. A Metadynamics simulation based on these information reveals the presence of two intermediate states, at an affordable computational cost.


2021 ◽  
Author(s):  
Khalfaoui-Hassani Bahia ◽  
Trasnea Petru-Iulian ◽  
Steimle Stefan ◽  
Koch Hans-Georg ◽  
Fevzi Daldal

CcoA belongs to the widely distributed bacterial copper (Cu) importer subfamily CalT (CcoA-like Transporters) of the Major Facilitator Superfamily (MFS), and provides cytoplasmic Cu needed for cbb3-type cytochrome c oxidase (cbb3-Cox) biogenesis. Earlier studies have supported a 12 transmembrane helices (TMH) topology of CcoA with the well-conserved Met233xxxMet237 and His261xxxMet265 motifs in its TMH7 and TMH8, respectively. Of these residues, Met233 and His261 are essential for Cu uptake and cbb3-Cox production, whereas Met237 and Met265 contribute partly to these processes. CcoA also contains five Cys residues of unknown role, and remarkably, its structural models predict that three of these are exposed to the highly oxidizing periplasm. Here, we first demonstrate that elimination of both Met237 and Met265 completely abolishes Cu uptake and cbb3-Cox production, indicating that CcoA requires at least one of these two Met residues for activity. Second, using scanning mutagenesis to probe plausible metal-interacting Met, His and Cys residues of CcoA we found that the periplasm-exposed Cys49 located at the end of TMH2, the Cys247 on a surface loop between TMH7 and THM8, and the C367 located at the end of TMH11 are important for CcoA function. Analyses of the single and double Cys mutants revealed the occurrence of a disulfide bond in CcoA in vivo, possibly related to conformational changes it undergoes during Cu import as MFS-type transporter. Our overall findings suggested a model linking Cu import for cbb3-Cox biogenesis with a thiol: disulfide oxidoreduction step, advancing our understanding of the mechanisms of CcoA function.


Sign in / Sign up

Export Citation Format

Share Document