scholarly journals Pathfinder: open source software for analyzing spatial navigation search strategies

2019 ◽  
Author(s):  
Matthew B. Cooke ◽  
Timothy P. O’Leary ◽  
Phelan Harris ◽  
Richard E. Brown ◽  
Jason S. Snyder

AbstractSpatial navigation is a universal behavior that varies depending on goals, experience and available sensory stimuli. Spatial navigational tasks are routinely used to study learning, memory and goal-directed behavior, in both animals and humans. One popular paradigm for testing spatial memory is the Morris water maze, where subjects learn the location of a hidden platform that offers escape from a pool of water. Researchers typically express learning as a function of the latency to escape, though this reveals little about the underlying navigational strategies. Recently, a number of studies have begun to classify water maze search strategies in order to clarify the precise spatial and mnemonic functions of different brain regions, and to identify which aspects of spatial memory are disrupted in disease models. However, despite their usefulness, strategy analyses have not been widely adopted due to the lack of software to automate analyses. To address this need we developed Pathfinder, an open source application for analyzing spatial navigation behaviors. In a representative dataset, we show that Pathfinder effectively characterizes the development of highly-specific spatial search strategies as male and female mice learn a standard spatial water maze. Pathfinder can read data files from commercially- and freely-available software packages, is optimized for classifying search strategies in water maze paradigms, but can also be used to analyze 2D navigation by other species, and in other tasks, as long as timestamped xy coordinates are available. Pathfinder is simple to use, can automatically determine pool and platform geometry, generates heat maps, analyzes navigation with respect to multiple goal locations, and can be updated to accommodate future developments in spatial behavioral analyses. Given these features, Pathfinder may be a useful tool for studying how navigational strategies are regulated by the environment, depend on specific neural circuits, and are altered by pathology.

F1000Research ◽  
2020 ◽  
Vol 8 ◽  
pp. 1521
Author(s):  
Matthew B. Cooke ◽  
Timothy P. O'Leary ◽  
Phelan Harris ◽  
Ricky Ma ◽  
Richard E. Brown ◽  
...  

Spatial navigation is a universal behavior that varies depending on goals, experience and available sensory stimuli. Spatial navigational tasks are routinely used to study learning, memory and goal-directed behavior, in both animals and humans. One popular paradigm for testing spatial memory is the Morris water maze, where subjects learn the location of a hidden platform that offers escape from a pool of water. Researchers typically express learning as a function of the latency to escape, though this reveals little about the underlying navigational strategies. Recently, a number of studies have begun to classify water maze search strategies in order to clarify the precise spatial and mnemonic functions of different brain regions, and to identify which aspects of spatial memory are disrupted in disease models. However, despite their usefulness, strategy analyses have not been widely adopted due to the lack of software to automate analyses. To address this need we developed Pathfinder, an open source application for analyzing spatial navigation behaviors. In a representative dataset, we show that Pathfinder effectively characterizes the development of highly-specific spatial search strategies as male and female mice learn a standard spatial water maze. Pathfinder can read data files from commercially- and freely-available software packages, is optimized for classifying search strategies in water maze paradigms, and can also be used to analyze 2D navigation by other species, and in other tasks, as long as timestamped xy coordinates are available. Pathfinder is simple to use, can automatically determine pool and platform geometry, generates heat maps, analyzes navigation with respect to multiple goal locations, and can be updated to accommodate future developments in spatial behavioral analyses. Given these features, Pathfinder may be a useful tool for studying how navigational strategies are regulated by the environment, depend on specific neural circuits, and are altered by pathology.


F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 1521 ◽  
Author(s):  
Matthew B. Cooke ◽  
Timothy P. O'Leary ◽  
Phelan Harris ◽  
Richard E. Brown ◽  
Jason S. Snyder

Spatial navigation is a universal behavior that varies depending on goals, experience and available sensory stimuli. Spatial navigational tasks are routinely used to study learning, memory and goal-directed behavior, in both animals and humans. One popular paradigm for testing spatial memory is the Morris water maze, where subjects learn the location of a hidden platform that offers escape from a pool of water. Researchers typically express learning as a function of the latency to escape, though this reveals little about the underlying navigational strategies. Recently, a number of studies have begun to classify water maze search strategies in order to clarify the precise spatial and mnemonic functions of different brain regions, and to identify which aspects of spatial memory are disrupted in disease models. However, despite their usefulness, strategy analyses have not been widely adopted due to the lack of software to automate analyses. To address this need we developed Pathfinder, an open source application for analyzing spatial navigation behaviors. In a representative dataset, we show that Pathfinder effectively characterizes the development of highly-specific spatial search strategies as male and female mice learn a standard spatial water maze. Pathfinder can read data files from commercially- and freely-available software packages, is optimized for classifying search strategies in water maze paradigms, and can also be used to analyze 2D navigation by other species, and in other tasks, as long as timestamped xy coordinates are available. Pathfinder is simple to use, can automatically determine pool and platform geometry, generates heat maps, analyzes navigation with respect to multiple goal locations, and can be updated to accommodate future developments in spatial behavioral analyses. Given these features, Pathfinder may be a useful tool for studying how navigational strategies are regulated by the environment, depend on specific neural circuits, and are altered by pathology.


2020 ◽  
Vol 10 (9) ◽  
pp. 617
Author(s):  
Mengmeng Li ◽  
Zhigang Shang ◽  
Kun Zhao ◽  
Shuguan Cheng ◽  
Hong Wan

Goal-directed navigation is a crucial behavior for the survival of animals, especially for the birds having extraordinary spatial navigation ability. In the studies of the neural mechanism of the goal-directed behavior, especially involving the information encoding mechanism of the route, the hippocampus (Hp) and nidopallium caudalle (NCL) of the avian brain are the famous regions that play important roles. Therefore, they have been widely concerned and a series of studies surrounding them have increased our understandings of the navigation mechanism of birds in recent years. In this paper, we focus on the studies of the information encoding mechanism of the route in the avian goal-directed behavior. We first summarize and introduce the related studies on the role of the Hp and NCL for goal-directed behavior comprehensively. Furthermore, we review the related cooperative interaction studies about the Hp-NCL local network and other relevant brain regions supporting the goal-directed routing information encoding. Finally, we summarize the current situation and prospect the existing important questions in this field. We hope this paper can spark fresh thinking for the following research on routing information encoding mechanism of birds.


2012 ◽  
Vol 7 (4) ◽  
pp. 596-602 ◽  
Author(s):  
Julius Hodosy ◽  
Daniela Ostatnikova ◽  
Vladimír Riljak ◽  
Jaromir Myslivecek ◽  
Peter Celec

AbstractMen and women differ in some cognitive functions including spatial abilities. These differences seem to be affected by sex steroids, but the results are controversial. The aim of this work is to describe the effects of rapid or depot testosterone and estradiol on spatial memory in rats. Thirty-two adult male Wistar rats were divided into 6 groups. Five groups were gonadectomized, and one group was left as control. Castrated groups received sterile oil, testosterone isobutyras, testosterone propionate, estradiol dipropionate or estradiol benzoate. We evaluated spatial performance (escape latency, overall improvement, and time in the quadrant after platform removal) of the rats in a spatial water maze. Animals receiving exogenous sex steroids showed higher plasma concentrations of the particular hormones. Experimental groups improved during the acquisition spatial trials in the water maze. No significant differences between the groups during probe trial were found. In overall improvement, the testosterone depot and estradiol depot groups showed less improvement in comparison to the control groups (P<0.05). No differences in respect to administered hormones were found in corresponding receptor gene expression in hippocampus. In conclusion, exogenous testosterone affects spatial memory of adult castrated males.


2021 ◽  
Vol 12 ◽  
Author(s):  
Daniel Lachner-Piza ◽  
Lukas Kunz ◽  
Armin Brandt ◽  
Matthias Dümpelmann ◽  
Aljoscha Thomschewski ◽  
...  

Human High-Frequency-Oscillations (HFO) in the ripple band are oscillatory brain activity in the frequency range between 80 and 250 Hz. HFOs may comprise different subgroups that either play a role in physiologic or pathologic brain functions. An exact differentiation between physiologic and pathologic HFOs would help elucidate their relevance for cognitive and epileptogenic brain mechanisms, but the criteria for differentiating between physiologic and pathologic HFOs remain controversial. In particular, the separation of pathologic HFOs from physiologic HFOs could improve the identification of epileptogenic brain regions during the pre-surgical evaluation of epilepsy patients. In this study, we performed intracranial electroencephalography recordings from the hippocampus of epilepsy patients before, during, and after the patients completed a spatial navigation task. We isolated hippocampal ripples from the recordings and categorized the ripples into the putative pathologic group iesRipples, when they coincided with interictal spikes, and the putative physiologic group isolRipples, when they did not coincide with interictal spikes. We found that the occurrence of isolRipples significantly decreased during the task as compared to periods before and after the task. The rate of iesRipples was not modulated by the task. In patients who completed the spatial navigation task on two consecutive days, we furthermore examined the occurrence of ripples in the intervening night. We found that the rate of ripples that coincided with sleep spindles and were therefore putatively physiologic correlated with the performance improvement on the spatial navigation task, whereas the rate of all ripples did not show this relationship. Together, our results suggest that the differentiation of HFOs into putative physiologic and pathologic subgroups may help identify their role for spatial memory and memory consolidation processes. Conversely, excluding putative physiologic HFOs from putative pathologic HFOs may improve the HFO-based identification of epileptogenic brain regions in future studies.


2019 ◽  
Author(s):  
Ru Qi Yu ◽  
Matthew Cooke ◽  
Jiaying Zhao ◽  
Jason S. Snyder

AbstractGoal-directed navigation requires learning strategies that are efficient and minimize costs. In some cases it may be desirable to flexibly adjust behavioral responses depending on the cues that vary from one episode to the next. In others, successful navigation might be achieved with inflexible, habit-like responses that reduce cognitive load. Adult neurogenesis is believed to contribute to the spatial processing functions of the hippocampus, particularly when behavioral flexibility is required. However, little is known about the role of neurogenesis in spatial navigation when goals are unpredictable or change according to certain rules. We hypothesized that neurogenesis is necessary in a spatial navigation task that involves different patterns of reinforcement. Intact and neurogenesis-deficient rats were trained to escape to one of two possible platform locations in a spatial water maze. The platform either repeated in the same location for all trials in a day, alternated between two locations across trials, or randomly moved between the two locations. Neurogenesis selectively enhanced escape performance in the alternating condition, but not by improving platform choice accuracy. Instead, neurogenesis-intact rats made fewer search errors and developed an efficient habit-like strategy where they consistently swam to a preferred location. If the platform was not present, they proceeded to the other possible location. In contrast, neurogenesis-deficient rats were indecisive and navigationally less-efficient. Thus, in conditions where goals follow a predictable spatiotemporal pattern, adult neurogenesis promotes the adoption of navigation strategies that are spatially nonspecific but, nonetheless, accurate and efficient.


Author(s):  
Mahmoud Hashemzaei ◽  
Najmeh Baratzadeh ◽  
Iraj Sharamian ◽  
Sahar Fanoudi ◽  
Mehdi Sanati ◽  
...  

Abstract Objectives H-89 (a protein kinase AII [PKA II] inhibitor) impairs the spatial memory in the Morris water maze task in rats. In the present study, we aimed to study the protective effects of nicotine and O-acetyl-L-carnitine against H-89-induced spatial memory deficits. Methods Spatial memory impairment was induced by the bilateral intrahippocampal administration of 10 µM H-89 (dissolved in dimethyl sulfoxide, DMSO) to rats. The rats then received bilateral administrations of either nicotine (1 μg/μL, dissolved in saline) or O-acetyl-L-carnitine (100 μM/side, dissolved in deionized water) alone and in combination. Control groups received either saline, deionized water, or DMSO. Results The H-89-treated animals showed significant increases in the time and distance travelled to find hidden platforms, and there was also a significant decrease in the time spent in the target quadrant compared to DMSO-treated animals. Nicotine and O-acetyl-L-carnitine had no significant effects on H-89-induced spatial learning impairments alone, but the bilateral intrahippocampal co-administration of nicotine and O-acetyl-L-carnitine prevented H-89-induced spatial learning deficits and increased the time spent in the target quadrant in comparison with H-89-treated animals. Conclusions Our results indicated the potential synergistic effects of nicotine and O-acetyl-L-carnitine in preventing protein kinase AII inhibitor (H-89)-induced spatial learning impairments.


2021 ◽  
pp. 153537022110568
Author(s):  
Natalia V Bobkova ◽  
Daria Y Zhdanova ◽  
Natalia V Belosludtseva ◽  
Nikita V Penkov ◽  
Galina D Mironova

Here, we found that functionally active mitochondria isolated from the brain of NMRI donor mice and administrated intranasally to recipient mice penetrated the brain structures in a dose-dependent manner. The injected mitochondria labeled with the MitoTracker Red localized in different brain regions, including the neocortex and hippocampus, which are responsible for memory and affected by degeneration in patients with Alzheimer's disease. In behavioral experiments, intranasal microinjections of brain mitochondria of native NMRI mice improved spatial memory in the olfactory bulbectomized (OBX) mice with Alzheimer’s type degeneration. Control OBX mice demonstrated loss of spatial memory tested in the Morris water maze. Immunocytochemical analysis revealed that allogeneic mitochondria colocalized with the markers of astrocytes and neurons in hippocampal cell culture. The results suggest that a non-invasive route intranasal administration of mitochondria may be a promising approach to the treatment of neurodegenerative diseases characterized, like Alzheimer's disease, by mitochondrial dysfunction.


Sign in / Sign up

Export Citation Format

Share Document