scholarly journals Direct Binding of Phosphatidylglycerol at Specific Sites Modulates Desensitization of a Pentameric Ligand-Gated Ion Channel

2019 ◽  
Author(s):  
Ailing Tong ◽  
John T. Petroff ◽  
Fong-Fu Hsu ◽  
Philipp A. M. Schmidpeter ◽  
Crina M. Nimigean ◽  
...  

AbstractPentameric ligand-gated ion channels (pLGICs) are essential determinants of synaptic transmission, and are modulated by specific lipids including anionic phospholipids. The exact modulatory effect of anionic phospholipids in pLGICs and the mechanism of this effect are not well understood. Using native mass spectrometry, coarse-grained molecular dynamics simulations and functional assays, we show that the anionic phospholipid, 1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG), preferentially binds to and stabilizes the pLGIC, Erwinia ligand-gated ion channel (ELIC), and decreases ELIC desensitization. Mutations of five arginines located in the interfacial regions of the transmembrane domain (TMD) reduce POPG binding, and a subset of these mutations increase ELIC desensitization. In contrast, the L240A mutant known to decrease ELIC desensitization, increases POPG binding. The results support a mechanism by which POPG stabilizes the open state of ELIC relative to the desensitized state by direct binding at specific sites.

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Ailing Tong ◽  
John T Petroff ◽  
Fong-Fu Hsu ◽  
Philipp AM Schmidpeter ◽  
Crina M Nimigean ◽  
...  

Pentameric ligand-gated ion channels (pLGICs) are essential determinants of synaptic transmission, and are modulated by specific lipids including anionic phospholipids. The exact modulatory effect of anionic phospholipids in pLGICs and the mechanism of this effect are not well understood. Using native mass spectrometry, coarse-grained molecular dynamics simulations and functional assays, we show that the anionic phospholipid, 1-palmitoyl-2-oleoyl phosphatidylglycerol (POPG), preferentially binds to and stabilizes the pLGIC, Erwinia ligand-gated ion channel (ELIC), and decreases ELIC desensitization. Mutations of five arginines located in the interfacial regions of the transmembrane domain (TMD) reduce POPG binding, and a subset of these mutations increase ELIC desensitization. In contrast, a mutation that decreases ELIC desensitization, increases POPG binding. The results support a mechanism by which POPG stabilizes the open state of ELIC relative to the desensitized state by direct binding at specific sites.


2016 ◽  
Vol 148 (3) ◽  
pp. 227-237 ◽  
Author(s):  
Sun-Joo Lee ◽  
Feifei Ren ◽  
Eva-Maria Zangerl-Plessl ◽  
Sarah Heyman ◽  
Anna Stary-Weinzinger ◽  
...  

Inward rectifier potassium (Kir) channel activity is controlled by plasma membrane lipids. Phosphatidylinositol-4,5-bisphosphate (PIP2) binding to a primary site is required for opening of classic inward rectifier Kir2.1 and Kir2.2 channels, but interaction of bulk anionic phospholipid (PL−) with a distinct second site is required for high PIP2 sensitivity. Here we show that introduction of a lipid-partitioning tryptophan at the second site (K62W) generates high PIP2 sensitivity, even in the absence of PL−. Furthermore, high-resolution x-ray crystal structures of Kir2.2[K62W], with or without added PIP2 (2.8- and 2.0-Å resolution, respectively), reveal tight tethering of the C-terminal domain (CTD) to the transmembrane domain (TMD) in each condition. Our results suggest a refined model for phospholipid gating in which PL− binding at the second site pulls the CTD toward the membrane, inducing the formation of the high-affinity primary PIP2 site and explaining the positive allostery between PL− binding and PIP2 sensitivity.


2021 ◽  
Author(s):  
Jeroen Methorst ◽  
Niek van Hilten ◽  
Herre Jelger Risselada

The occurrence of linear cholesterol-recognition motifs in alpha-helical transmembrane domains has long been debated. Here, we demonstrate the ability of a genetic algorithm guided by coarse-grained molecular dynamics simulations---a method coined evolutionary molecular dynamics (evo-MD)---to directly resolve the sequence which maximally attracts/sorts cholesterol within a single-pass alpha-helical transmembrane domain (TMDs). We illustrate that the evolutionary landscape of cholesterol attraction in membrane proteins is characterized by a sharp, well-defined global optimum. Surprisingly, this optimal solution features an unusual short hydrophobic block, consisting of typically only eight short chain hydrophobic amino acids, surrounded by three successive lysines. Owing to the membrane thickening effect of cholesterol, cholesterol-enriched ordered phases favor TMDs characterized by a long rather than a short hydrophobic length. However, this short hydrophobic pattern evidently offers a pronounced net advantage for the binding of free cholesterol in both coarse-grained and atomistic simulations. Attraction is mediated by the unique ability of cholesterol to snorkel within the hydrophobic core of the membrane and thereby shield deeply located lysines from the unfavorable hydrophobic surrounding. Since this mechanism of attraction is of a thermodynamic nature and is not based on molecular shape specificity, a large diversity of sub-optimal cholesterol attracting sequences can exist. The puzzling sequence variability of proposed linear cholesterol-recognition motifs is thus consistent with sub-optimal, unspecific binding of cholesterol. Importantly, since evo-MD uniquely enables the targeted design of recognition motifs for distinct fluid lipid membranes, we foresee wide applications for evo-MD in the biological and biomedical fields.


2020 ◽  
Vol 295 (20) ◽  
pp. 6798-6808 ◽  
Author(s):  
Haley R. Harrington ◽  
Matthew H. Zimmer ◽  
Laura M. Chamness ◽  
Veronica Nash ◽  
Wesley D. Penn ◽  
...  

Viruses maximize their genetic coding capacity through a variety of biochemical mechanisms, including programmed ribosomal frameshifting (PRF), which facilitates the production of multiple proteins from a single mRNA transcript. PRF is typically stimulated by structural elements within the mRNA that generate mechanical tension between the transcript and ribosome. However, in this work, we show that the forces generated by the cotranslational folding of the nascent polypeptide chain can also enhance PRF. Using an array of biochemical, cellular, and computational techniques, we first demonstrate that the Sindbis virus structural polyprotein forms two competing topological isomers during its biosynthesis at the ribosome-translocon complex. We then show that the formation of one of these topological isomers is linked to PRF. Coarse-grained molecular dynamics simulations reveal that the translocon-mediated membrane integration of a transmembrane domain upstream from the ribosomal slip site generates a force on the nascent polypeptide chain that scales with observed frameshifting. Together, our results indicate that cotranslational folding of this viral protein generates a tension that stimulates PRF. To our knowledge, this constitutes the first example in which the conformational state of the nascent polypeptide chain has been linked to PRF. These findings raise the possibility that, in addition to RNA-mediated translational recoding, a variety of cotranslational folding or binding events may also stimulate PRF.


2021 ◽  
Vol 22 (20) ◽  
pp. 11015
Author(s):  
Shan Zhang ◽  
Ming Ma ◽  
Zhuang Shao ◽  
Jincheng Zhang ◽  
Lei Fu ◽  
...  

Temporins are a family of antimicrobial peptides (AMPs) isolated from frog skin, which are very short, weakly charged, and highly hydrophobic. They execute bactericidal activities in different ways from many other AMPs. This work investigated morphological changes of planar bilayer membranes composed of mixed zwitterionic and anionic phospholipids induced by temporin B and L (TB and TL) using all-atom and coarse-grained molecular dynamics simulations. We found that TB and TL fold to α-helices at the membrane surface and penetrate shallowly into the bilayer. These short AMPs have low propensity to induce membrane pore formation but possess high ability to extract lipids out. At relatively high peptide concentrations, the strong hydrophobicity of TB and TL promotes them to aggregate into clusters on the membrane surface. These aggregates attract a large amount of lipids out of the membrane to release compression induced by other dispersed peptides binding to the membrane. The extruded lipids mix evenly with the peptides in the cluster and form tubule-like protrusions. Certain water molecules follow the movement of lipids, which not only fill the cavities of the protrusion but also assist in maintaining the tubular structures. In contrast, the peptide-free leaflet remains intact. The present results unravel distinctive antimicrobial mechanisms of temporins disturbing membranes.


Author(s):  
Guido Mellado ◽  
Jose Antonio Garate ◽  
Alan Neely

Spider toxin SNX-482 is a cysteine-rich peptide that interferes with calcium channel activity by binding to voltage-sensing domains of CaV2.3 subtype. Two general binding mechanisms are present in nature: direct binding from the aqueous phase or through lateral diffusion from the membrane, the so-called reduction in dimensionality mechanism. In this work, via coarse-grained and atomistic molecular dynamics simulations, we have systematically studied the spontaneous partitioning of SNX-482 with membranes of different anionic compositions and explored via diffusional analysis both binding mechanisms. Our simulations revealed a conserved protein patch that inserts within the membrane, a preference for binding towards partially negatively charged membranes, and that electrostatics drives membrane binding. Finally, diffusivity calculations showed that the toxin diffusion along the membrane plane is an order of magnitude slower than the aqueous phase suggesting that the critical factor in determin-ing the SNX-482-CaV2.3 binding mechanism is the affinity between the membrane and SNX-482


2021 ◽  
Author(s):  
Akshay Sridhar ◽  
Sarah C.R. Lummis ◽  
Diletta Pasini ◽  
Aujan Mehregan ◽  
Marijke Brams ◽  
...  

AbstractPentameric ligand-gated ion channels (pLGICs) are crucial mediators of electrochemical signal transduction from bacteria to humans. Lipids play an important role in regulating pLGIC function, yet the structural basis for specific pLGIC-lipid interactions remains poorly understood. The bacterial channel ELIC recapitulates several properties of eukaryotic pLGICs, including activation by the neurotransmitter GABA and sensitivity to lipids, offering a simplified model system for structure-function studies. In this study, functional effects of non-canonical amino acid substitution of W206 at the top of the M1-helix, combined with detergent interactions observed in recent X-ray structures, are consistent with this region being the location of a lipid binding site on the outward face of the ELIC transmembrane domain. Coarse-grained and atomistic molecular dynamics simulations revealed preferential binding of lipids containing a positive charge, particularly involving interactions with residue W206 consistent with cation-π binding. Polar contacts from the principal subunit, particularly M3 residue Q264, further supported lipid binding via headgroup ester linkages. Aromatic residues were identified at analogous sites in a handful of eukaryotic family members, including the human GABAA receptor subunit ɛ, suggesting conservation of relevant interactions in other evolutionary branches. Further mutagenesis experiments indicated that mutations at this site in ɛ-containing GABAA receptors can change the apparent affinity of the agonist response to GABA, consistent with a potential role of this site in channel gating. In conclusion, this work is a detailed case study in type-specific lipid interactions at an evolutionarily distinctive pLGIC site, with implications for lipid modulation and lipophilic drug design.


2020 ◽  
Author(s):  
Florencia Klein ◽  
Daniela Cáceres-Rojas ◽  
Monica Carrasco ◽  
Juan Carlos Tapia ◽  
Julio Caballero ◽  
...  

<p>Although molecular dynamics simulations allow for the study of interactions among virtually all biomolecular entities, metal ions still pose significant challenges to achieve an accurate structural and dynamical description of many biological assemblies. This is particularly the case for coarse-grained (CG) models. Although the reduced computational cost of CG methods often makes them the technique of choice for the study of large biomolecular systems, the parameterization of metal ions is still very crude or simply not available for the vast majority of CG- force fields. Here, we show that incorporating statistical data retrieved from the Protein Data Bank (PDB) to set specific Lennard-Jones interactions can produce structurally accurate CG molecular dynamics simulations. Using this simple approach, we provide a set of interaction parameters for Calcium, Magnesium, and Zinc ions, which cover more than 80% of the metal-bound structures reported on the PDB. Simulations performed using the SIRAH force field on several proteins and DNA systems show that using the present approach it is possible to obtain non-bonded interaction parameters that obviate the use of topological constraints. </p>


2020 ◽  
Vol 15 (3) ◽  
pp. 1934578X1990068
Author(s):  
Noriyuki Uchida ◽  
Masayoshi Yanagi ◽  
Hiroki Hamada

Composite nanoparticles composed of an anionic phospholipid of 1,2-dipalmitoyl-sn-glycero-3-phosphorylglycerol (DPPG) and paclitaxel (PTX) were successfully prepared by mixing them in water followed by a subsequent heating/cooling process. The size of DPPG-PTX nanoparticle could be easily tuned by ultrasonic fragmentation. Upon addition of small-sized fluorescently labeled paclitaxel (FLPTX) nanoparticles with DPPG (DPPG-FLPTX) to rat skin tissue, part of the FLPTX molecules permeated to the stratum corneum.


Sign in / Sign up

Export Citation Format

Share Document