scholarly journals Dynamic response of RNA editing to temperature in Grape by RNA deep-sequencing

2019 ◽  
Author(s):  
Aidi Zhang ◽  
Xiaohan Jiang ◽  
Fuping Zhang ◽  
Tengfei Wang ◽  
Xiujun Zhang

AbstractRNA editing is a post-transcriptional process of modifying genetic information on RNA molecules, which provides cells an additional level of gene expression regulation. Unlike mammals, in land plants, RNA editing converts C to U residues in organelles. However, its potential role in response to different stressors (heat, salt and so on) remains unclear. Grape is one of the most popular and economically important fruits in the world, and its production, like other crops, must deal with abiotic and biotic stresses, which cause reductions in yield and fruit quality. In our study, we tested the influence of the environmental factor temperature on RNA processing in the whole mRNA from grape organelle. In total, we identified 123 and 628 RNA editing in chloroplast and mitochondria respectively with the average editing extent nearly ~60%. The analyses revealed that number of non-synonymous editing sites were higher than that of synonymous editing sites, and the amino acid substitution type tend to be hydrophobic. Additionally, the overall editing level decreased with the temperature rises, especially several gene transcripts in chloroplast and mitochondria (matK, ndhB etc.). 245 sites were furthermore determined as stress-responsive sites candidates. We also found that the expression level of PPR genes decreased with the temperature rises, which may contribute to the loss of RNA editing at high temperature. Our findings suggest that the RNA editing events are very sensitive to high temperature, the changes of amino acid in these genes may contribute to the stress adaption for grape.

2019 ◽  
Vol 20 (3) ◽  
pp. 421-432 ◽  
Author(s):  
Aidi Zhang ◽  
Xiaohan Jiang ◽  
Fuping Zhang ◽  
Tengfei Wang ◽  
Xiujun Zhang

AbstractRNA editing is a post-transcriptional process of modifying genetic information on RNA molecules, which provides cells an additional level of gene expression regulation. Unlike mammals, in land plants, RNA editing converts C-to-U residues in organelles. However, its potential roles in response to different stressors (heat, salt, and so on) remains unclear. Grape is one of the most popular and economically important fruits in the world, and its production, like other crops, must deal with abiotic and biotic stresses, which cause reductions in yield and fruit quality. In our study, we tested the influence of the environmental factor temperature on RNA editing process in the whole mRNA from grape organelle. In total, we identified 122 and 627 RNA editing sites in chloroplast and mitochondria respectively with the average editing efficiency nearly ~ 60%. The analyses revealed that number of non-synonymous editing sites were higher than that of synonymous editing sites, and the amino acid substitution type tends to be hydrophobic. Additionally, the overall editing level decreased with the temperature rises, especially for several gene transcripts in chloroplast and mitochondria (matK, ndhB, etc.). We also found that the expression level of most PPR genes decreased with the temperature rises, which may contribute to the decline of RNA editing efficiency at high temperature. Our findings suggested that the RNA editing events were very sensitive to heat stress; the changes of amino acid in RNA editing genes may contribute to the stress adaption for grape.


2021 ◽  
Vol 316 ◽  
pp. 809-813
Author(s):  
Vladimir V. Karzhavin ◽  
Lev V. Maltsev ◽  
Viktoriya V. Bakina

The copper covering put in fused salts of chlorides at temperature of 450-500cC and preventing scuffs on the surface of steel of type 12X18H10T at cold stamping of case products and fixture was investigated. Metallurgical surveys have shown: 1) except cover zone and zone of base metal there is also transition zone, representing substitution type of solution; 2) in the course of application there is superficial alloying, due to penetration of atoms of copper deep into metal and diffusions of doping steel elements in coating material under the influence of melts's high temperature. The schedule of change of concentration of copper in diffusion zone allows to conclude that the copper covering consists not of pure copper, and that the alloy contains only 94% of copper; other 6% represent the chrome and the titanium diffusing in copper covering. It is established also that, despite strong cohesion with basis, the covering is completely removed from surface of the stamping details being dissolved in standard sulphuric acid solution.


2008 ◽  
Vol 36 (19) ◽  
pp. 6155-6164 ◽  
Author(s):  
Kenji Okuda ◽  
Yuya Habata ◽  
Yoshichika Kobayashi ◽  
Toshiharu Shikanai

2008 ◽  
Vol 86 (7) ◽  
pp. 714-719
Author(s):  
Giancarlo Verardo ◽  
Paola Geatti ◽  
Marta Mancuso ◽  
Paolo Strazzolini

The reaction of formaldehyde with enantiomerically pure α-N-protected amino acid hydrazides is described. The system has been investigated in different solvents, including both aqueous formaldehyde and paraformaldehyde, with the aim of simplifying the final reaction mixture. Aqueous formaldehyde in refluxing THF proved to be the best combination, affording mainly the corresponding monomeric N-methylene and 1,3,5-trisubstituted-1,3,5-hexahydrotriazine derivatives. The monomeric form was the only one present at high temperature, as evidenced by 1H and 13C NMR spectroscopy.Key words: amino acid hydrazides, formaldehyde, condensation reactions, monomeric N-methylene derivatives, oligomers.


Synlett ◽  
2018 ◽  
Vol 29 (20) ◽  
pp. 2648-2654
Author(s):  
Ian Baxendale ◽  
Marcus Baumann ◽  
Ishika Saha

A detailed account on the outcome of the thermal reaction between benzylidene phthalides and various amino acid derivatives is reported. It was discovered that the tricyclic pyrroles as previously described are not the products formed in these reactions. Instead under high-temperature conditions decarboxylated phthalamide adducts are formed within 5-10 minutes. Additionally, an unprecedented alkene transposition mechanism has been identified leading to the final products of these reactions.


Author(s):  
Xiang Yu ◽  
Bishwas Sharma ◽  
Brian D Gregory

Abstract Ribonucleotides within the various RNA molecules in eukaryotes are marked with more than 160 distinct covalent chemical modifications. These modifications include those that occur internally in messenger RNA (mRNA) molecules such as N6-methyladenosine (m6A) and 5-methylcytosine (m5C), as well as those that occur at the ends of the modified RNAs like the non-canonical 5′ end nicotinamide adenine dinucleotide (NAD+) cap modification of specific mRNAs. Recent findings have revealed that covalent RNA modifications can impact the secondary structure, translatability, functionality, stability and degradation of the RNA molecules in which they are included. Many of these covalent RNA additions have also been found to be dynamically added and removed through writer and eraser complexes, respectively, providing a new layer of epitranscriptome-mediated post-transcriptional regulation that regulates RNA quality and quantity in eukaryotic transcriptomes. Thus, it is not surprising that the regulation of RNA fate mediated by these epitranscriptomic marks has been demonstrated to have widespread effects on plant development and the responses of these organisms to abiotic and biotic stresses. In this review, we highlight recent progress focused on the study of the dynamic nature of these epitranscriptome marks and their roles in post-transcriptional regulation during plant development and response to environmental cues, with an emphasis on the mRNA modifications of non-canonical 5′ end NAD+ capping, m6A and several other internal RNA modifications.


2019 ◽  
Vol 20 (2) ◽  
pp. 437
Author(s):  
Mariya Tsaneva ◽  
Kristof De Schutter ◽  
Bruno Verstraeten ◽  
Els J.M. Van Damme

Rice (Oryza sativa) is one of the main staple crops worldwide but suffers from important yield losses due to different abiotic and biotic stresses. Analysis of quantitative trait loci (QTL) is a classical genetic method which enables the creation of more resistant cultivars but does not yield information on the genes directly involved or responsible for the desired traits. Lectins are known as proteins with diverse functions in plants. Some of them are abundant proteins in seeds and are considered as storage/defense proteins while other lectins are known as stress-inducible proteins, implicated in stress perception and signal transduction as part of plant innate immunity. We investigated the distribution of lectin sequences in different QTL related to stress tolerance/resistance, morphology, and physiology through mapping of the lectin sequences and QTL regions on the chromosomes and subsequent statistical analysis. Furthermore, the domain structure and evolutionary relationships of the lectins in O. sativa spp. indica and japonica were investigated. Our results revealed that lectin sequences are statistically overrepresented in QTLs for (a)biotic resistance/tolerance as well as in QTLs related to economically important traits such as eating quality and sterility. These findings contribute to the characterization of the QTL sequences and can provide valuable information to the breeders.


1975 ◽  
Vol 147 (1) ◽  
pp. 63-70 ◽  
Author(s):  
O H Kao ◽  
M R Edwards ◽  
D S Berns

C-Phycocyanin from an acido-thermophilic eukaryotic alga, Cyanidium caldarium, was characterized with respect to subunit structure, absorption spectrum and fluorescence properties and was found to be similar to C-phycocyanins from mesophilic sources. The pH-dependence of fluorescence polarization and the changes in sedimentation velocity as a function of pH, concentration and temperature indicate the presence of extremely large amounts of unusually stable 19S aggregates. It was not possible to disaggregate this phycocyanin completely to monomer under normal conditions. The amino acid composition is similar to that of phycocyanins from other thermophilic and halophilic sources. The isoelectric point of this C-phycocyanin was 5.11, an unusually high value. The properties of this C-phycocyanin suggest an increase in protein stability as its mode of adaptation to the environmental stress of high temperature.


Sign in / Sign up

Export Citation Format

Share Document