scholarly journals Full-annual demography and seasonal cycles in a resident vertebrate

2019 ◽  
Author(s):  
Murilo Guimarães ◽  
Décio Correa ◽  
Marília Palumbo Gaiarsa ◽  
Marc Kéry

AbstractDemography is usually studied at a single point in time within a year when species, mostly long-distance migrants, are more active and easier to find. However, this provides only a low-resolution glimpse into demographic temporal patterns, compromising a complete understanding of species’ population dynamics over full annual cycles. The full annual cycle is often influenced by environmental seasonality, which induces a cyclic behavior in many species. However, cycles have rarely been explicitly included in models for demographic parameters, and most information on full annual cycle demography is restricted to migratory species. Here we used a high-resolution capture-recapture study of a resident tropical lizard to assess the full intra-annual demography and within-year periodicity in survival, temporary emigration and recapture probabilities. We found important variation over the annual cycle and up to 92% of the total monthly variation explained by cycles. Fine-scale demographic studies and assessments on the importance of cycles within parameters are fundamental to understand population persistence over time.

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8658
Author(s):  
Murilo Guimarães ◽  
Decio T. Correa ◽  
Marília Palumbo Gaiarsa ◽  
Marc Kéry

Wildlife demography is typically studied at a single point in time within a year when species, often during the reproductive season, are more active and therefore easier to find. However, this provides only a low-resolution glimpse into demographic temporal patterns over time and may hamper a more complete understanding of the population dynamics of a species over the full annual cycle. The full annual cycle is often influenced by environmental seasonality, which induces a cyclic behavior in many species. However, cycles have rarely been explicitly included in models for demographic parameters, and most information on full annual cycle demography is restricted to migratory species. Here we used a high-resolution capture-recapture study of a resident tropical lizard to assess the full intra-annual demography and within-year periodicity in survival, temporary emigration and recapture probabilities. We found important variation over the annual cycle and up to 92% of the total monthly variation explained by cycles. Fine-scale demographic studies and assessments on the importance of cycles within parameters may be a powerful way to achieve a better understanding of population persistence over time.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260339
Author(s):  
Bryan D. Watts ◽  
Fletcher M. Smith ◽  
Chance Hines ◽  
Laura Duval ◽  
Diana J. Hamilton ◽  
...  

Many long-distance migratory birds use habitats that are scattered across continents and confront hazards throughout the annual cycle that may be population-limiting. Identifying where and when populations spend their time is fundamental to effective management. We tracked 34 adult whimbrels (Numenius phaeopus) from two breeding populations (Mackenzie Delta and Hudson Bay) with satellite transmitters to document the structure of their annual cycles. The two populations differed in their use of migratory pathways and their seasonal schedules. Mackenzie Delta whimbrels made long (22,800 km) loop migrations with different autumn and spring routes. Hudson Bay whimbrels made shorter (17,500 km) and more direct migrations along the same route during autumn and spring. The two populations overlap on the winter grounds and within one spring staging area. Mackenzie Delta whimbrels left the breeding ground, arrived on winter grounds, left winter grounds and arrived on spring staging areas earlier compared to whimbrels from Hudson Bay. For both populations, migration speed was significantly higher during spring compared to autumn migration. Faster migration was achieved by having fewer and shorter stopovers en route. We identified five migratory staging areas including four that were used during autumn and two that were used during spring. Whimbrels tracked for multiple years had high (98%) fidelity to staging areas. We documented dozens of locations where birds stopped for short periods along nearly all migration routes. The consistent use of very few staging areas suggests that these areas are integral to the annual cycle of both populations and have high conservation value.


2007 ◽  
Vol 363 (1490) ◽  
pp. 247-266 ◽  
Author(s):  
Deborah M Buehler ◽  
Theunis Piersma

Long-distance migration, and the study of the migrants who undertake these journeys, has fascinated generations of biologists. However, many aspects of the annual cycles of these migrants remain a mystery as do many of the driving forces behind the evolution and maintenance of the migrations themselves. In this article we discuss nutritional, energetic, temporal and disease - risk bottlenecks in the annual cycle of long-distance migrants, taking a sandpiper, the red knot Calidris canutus , as a focal species. Red knots have six recognized subspecies each with different migratory routes, well-known patterns of connectivity and contrasting annual cycles. The diversity of red knot annual cycles allows us to discuss the existence and the effects of bottlenecks in a comparative framework. We examine the evidence for bottlenecks focusing on the quality of breeding plumage and the timing of moult as indicators in the six subspecies. In terms of breeding plumage coloration, quality and timing of prealternate body moult (from non-breeding into breeding plumage), the longest migrating knot subspecies, Calidris canutus rogersi and Calidris canutus rufa , show the greatest impact of bottlenecking. The same is true in terms of prebasic body moult (from breeding into non-breeding plumage) which in case of both C. c. rogersi and C. c. rufa overlaps with southward migration and may even commence in the breeding grounds. To close our discussion of bottlenecks in long-distance migrants, we make predictions about how migrants might be impacted via physiological ‘trade-offs’ throughout the annual cycle, using investment in immune function as an example. We also predict how bottlenecks may affect the distribution of mortality throughout the annual cycle. We hope that this framework will be applicable to other species and types of migrants, thus expanding the comparative database for the future evaluation of seasonal selection pressures and the evolution of annual cycles in long-distance migrants. Furthermore, we hope that this synthesis of recent advancements in the knowledge of red knot annual cycles will prove useful in the ongoing attempts to model annual cycles in migratory birds.


Behaviour ◽  
2017 ◽  
Vol 154 (7-8) ◽  
pp. 785-807 ◽  
Author(s):  
Ladislav Naďo ◽  
Renáta Chromá ◽  
Peter Kaňuch

Social groups of bats that operate under fission–fusion dynamics tend to establish and maintain non-random associations. We examined the social and genetic structure of the Leisler’s bat (Nyctalus leisleri), a species that is typical of tree-dwelling and long-distance migratory species in Europe. We used long-term co-occurrence data (capture-recapture sampling of roosting individuals) in combination with individual genetic relatedness (inferred from a set of microsatellite markers) to assess relationships between structural, temporal and genetic properties of roosting groups. Our results showed that social structure in groups of roosting Leisler’s bat was not random. Social clusters revealed by network analysis were almost identical to demographic cohorts, which indicates that Leisler’s bats are able to maintain social bonds only over a single season. After the period of active maternal care, roosting groups became smaller with a significantly higher level of genetic relatedness among adult females in contrast to the pregnancy and lactation stages. This provides some evidence that temporal social associations may be positively correlated with genetic relatedness. Low recapture rates of bats across seasons in light of natal philopatry indicates a shorter life span of individuals likely due to high mortality during long distance migratory movements. This probably has the most significant effect on the social system of this species.


2011 ◽  
Vol 24 (20) ◽  
pp. 5292-5302 ◽  
Author(s):  
Cheng Qian ◽  
Congbin Fu ◽  
Zhaohua Wu

Abstract Climate change is not only reflected in the changes in annual means of climate variables but also in the changes in their annual cycles (seasonality), especially in the regions outside the tropics. In this study, the ensemble empirical mode decomposition (EEMD) method is applied to investigate the nonlinear trend in the amplitude of the annual cycle (which contributes 96% of the total variance) of China’s daily mean surface air temperature for the period 1961–2007. The results show that the variation and change in the amplitude are significant, with a peak-to-peak annual amplitude variation of 13% (1.8°C) of its mean amplitude and a significant linear decrease in amplitude by 4.6% (0.63°C) for this period. Also identified is a multidecadal change in amplitude from significant decreasing (−1.7% decade−1 or −0.23°C decade−1) to significant increasing (2.2% decade−1 or 0.29°C decade−1) occurring around 1993 that overlaps the systematic linear trend. This multidecadal change can be mainly attributed to the change in surface solar radiation, from dimming to brightening, rather than to a warming trend or an enhanced greenhouse effect. The study further proposes that the combined effect of the global dimming–brightening transition and a gradual increase in greenhouse warming has led to a perceived warming trend that is much larger in winter than in summer and to a perceived accelerated warming in the annual mean since the early 1990s in China. It also notes that the deseasonalization method (considering either the conventional repetitive climatological annual cycle or the time-varying annual cycle) can also affect trend estimation.


Ecology ◽  
2004 ◽  
Vol 85 (8) ◽  
pp. 2107-2113 ◽  
Author(s):  
Michael Schaub ◽  
Olivier Gimenez ◽  
Benedikt R. Schmidt ◽  
Roger Pradel

Author(s):  
Hongqiang Li ◽  
Dongyan Zhao ◽  
Xiaoke Tang ◽  
Jie Gan ◽  
Xu Zhao ◽  
...  

With the rapid development of IoT technology in recent years, higher requirements have been put forward for wireless communication technology. Low Power Wide Area Network (LPWAN) technology is emerging rapidly, the technology is characterized by low power consumption, low bandwidth, long-distance, and a large number of connections, and is specifically designed for Internet of Things applications. LoRa (Low Power Long Range Transceiver), as a typical representative of LPWAN technology, has been widely concerned and studied. This paper analyzes the performance of LoRa modulation in the tree topology network and analyzes the performance of LoRa modulation in the imperfect environment for point-to-point communication and multipoint-to-point communication. From theoretical analysis and performance simulation, it can be seen that the influence of frequency offset or multipath fading on LoRa signal is very obvious. However, when LoRa modulation is used for networking, multi-user interference will be introduced. Under the influence of many imperfect factors, the signal receiver performance of LoRa modulation will be difficult to guarantee. Because of these effects, Coordinated Multiple Points based on Timing Delay (DCoMP) is presented. Multiple nodes close to each other send the same data to the target node. Due to the inaccurate synchronization between nodes, there will be a certain relative delay when sending signals to the same target node. After the receiving node combines the signals of multiple nodes according to different relative delays, the reception performance of the signals can be improved. At the same time, the cooperative node can also actively adjust the signal sending time to improve the reception performance of the receiving node signal merging algorithm. LoRa modulation, by using DCoMP transmission, improves the reception of signals and thus the overall capacity of the system. Through the analysis of multipoint communication and single point communication, this paper is of great help to LoRa network deployment.


2019 ◽  
Vol 32 (21) ◽  
pp. 7369-7402 ◽  
Author(s):  
Yue Wang ◽  
ZhiMin Jian ◽  
Ping Zhao ◽  
Kang Xu ◽  
Haowen Dang ◽  
...  

Abstract Based on a transient simulation of the Community Earth System Model, we identified two anomalous “zonal triple-pole type” annual cycles in the equatorial Pacific sea surface temperature (SST), which were induced by precessional evolution of the summer-minus-winter insolation difference and the autumn-minus-spring insolation difference, respectively. For example, due to the increased summer–winter insolation contrast, a zonal positive–negative–positive pattern of equatorial SST anomalies was detected after subtracting basin-scale summer SST warming. The positive SST anomalies were associated with anomalous upward air flows over the western Pacific and eastern Pacific, whereas the negative SST anomalies in the central Pacific were coupled with anomalous downward air flows, oceanic upwelling, and thermocline cooling. These central Pacific anomalies were due to multiple air–sea interactions, particularly zonal advection feedback and Bjerknes feedback. This anomalous annual cycle also included winter equatorial air–sea coupled anomalies with similar spatial patterns but opposite signs. The annual mean equatorial rainfall was significantly increased west of 135°E but decreased between 135°E and 160°W in response to the moderately intensified Walker circulation west of 160°W. The autumn–spring insolation contrast induced similar seasonal reversed anomalies during autumn and spring, but the annual means were only weakly enhanced for the Walker circulation and the rainfall anomalies had smaller magnitudes east of 160°E. These distinct responses of the annual mean climate indicated different seasonal biases in terms of the equatorial SST and associated Walker circulation anomalies due to forcing by the two seasonal insolation contrasts, and these findings had meaningful implications for paleoceanographic studies.


2019 ◽  
Vol 32 (22) ◽  
pp. 7747-7761 ◽  
Author(s):  
Leif M. Swenson ◽  
Richard Grotjahn

Abstract Extreme precipitation events have major societal impacts. These events are rare and can have small spatial scale, making statistical analysis difficult; both factors are mitigated by combining events over a region. A methodology is presented to objectively define “coherent” regions wherein data points have matching annual cycles. Regions are found by training self-organizing maps (SOMs) on the annual cycle of precipitation for each grid point across the contiguous United States (CONUS). Using the annual cycle for our intended application minimizes problems caused by consecutive dry periods and localized extreme events. Multiple criteria are applied to identify useful numbers of regions for our future application. Criteria assess these properties for each region: having many more events than experienced by a single grid point, good connectedness and compactness, and robustness to changing the number of regions. Our methodology is applicable across datasets and is tested here on both reanalysis and gridded observational data. Precipitation regions obtained align with large-scale geographical features and are readily interpretable. Useful numbers of regions balance two conflicting preferences: larger regions contain more events and thereby have more robust statistics, but more compact regions allow weather patterns associated with extreme events to be aggregated with confidence. For 6-h precipitation, 12–15 regions over the CONUS optimize our metrics. The regions obtained are compared against two existing region archetypes. For example, a popular set of regions, based on nine groups of states, has less coherent regions than defining the same number of regions with our SOM methodology.


2019 ◽  
Vol 19 (12) ◽  
pp. 8101-8121 ◽  
Author(s):  
Ralf Bennartz ◽  
Frank Fell ◽  
Claire Pettersen ◽  
Matthew D. Shupe ◽  
Dirk Schuettemeyer

Abstract. We use the CloudSat 2006–2016 data record to estimate snowfall over the Greenland Ice Sheet (GrIS). We first evaluate CloudSat snowfall retrievals with respect to remaining ground-clutter issues. Comparing CloudSat observations to the GrIS topography (obtained from airborne altimetry measurements during IceBridge) we find that at the edges of the GrIS spurious high-snowfall retrievals caused by ground clutter occasionally affect the operational snowfall product. After correcting for this effect, the height of the lowest valid CloudSat observation is about 1200 m above the local topography as defined by IceBridge. We then use ground-based millimeter wavelength cloud radar (MMCR) observations obtained from the Integrated Characterization of Energy, Clouds, Atmospheric state, and Precipitation at Summit, Greenland (ICECAPS) experiment to devise a simple, empirical correction to account for precipitation processes occurring between the height of the observed CloudSat reflectivities and the snowfall near the surface. Using the height-corrected, clutter-cleared CloudSat reflectivities we next evaluate various Z–S relationships in terms of snowfall accumulation at Summit through comparison with weekly stake field observations of snow accumulation available since 2007. Using a set of three Z–S relationships that best agree with the observed accumulation at Summit, we then calculate the annual cycle snowfall over the entire GrIS as well as over different drainage areas and compare the derived mean values and annual cycles of snowfall to ERA-Interim reanalysis. We find the annual mean snowfall over the GrIS inferred from CloudSat to be 34±7.5 cm yr−1 liquid equivalent (where the uncertainty is determined by the range in values between the three different Z–S relationships used). In comparison, the ERA-Interim reanalysis product only yields 30 cm yr−1 liquid equivalent snowfall, where the majority of the underestimation in the reanalysis appears to occur in the summer months over the higher GrIS and appears to be related to shallow precipitation events. Comparing all available estimates of snowfall accumulation at Summit Station, we find the annually averaged liquid equivalent snowfall from the stake field to be between 20 and 24 cm yr−1, depending on the assumed snowpack density and from CloudSat 23±4.5 cm yr−1. The annual cycle at Summit is generally similar between all data sources, with the exception of ERA-Interim reanalysis, which shows the aforementioned underestimation during summer months.


Sign in / Sign up

Export Citation Format

Share Document