scholarly journals Spatial and phylogenetic structure of Alpine stonefly community assemblages across seven habitats using DNA-species

2019 ◽  
Author(s):  
Maribet Gamboa ◽  
Joeselle Serrana ◽  
Yasuhiro Takemon ◽  
Michael T. Monaghan ◽  
Kozo Watanabe

AbstractStream ecosystems are spatially heterogeneous, with many different habitat patches distributed within a small area. The influence of this heterogeneity on the biodiversity of benthic insect communities is well documented; however, studies of the role of habitat heterogeneity in species coexistence and community assembly remain limited. Here, we asked how habitat heterogeneity influences spatial structure (beta biodiversity) and phylogenetic structure (evolutionary processes) of benthic stonefly (Plecoptera, Insecta) communities.We sampled 20 sites along two Alpine rivers, including seven habitats in four different reaches (headwaters, meandering, bar-braided floodplain, and lowland spring-fed). We identified 21 morphological species and delineated 52 DNA-species based on sequences from mitochondrial cox1 and nuclear ITS markers. Using DNA-species, we first analysed the patterns of variation in richness, diversity, and composition by quantifing the contribution of each of the four reaches and seven habitats to the overall DNA-species diversity using an additive partition of species diversity analysis and distance-based redundancy analysis. Using gene-tree phylogenies, we assessed whether environmental filtering led to the co-occurrence of DNA-species using a two-step analysis to find a phylogenetic signal.The four reaches significantly contributed to DNA-species richness; with the meandering section displaying the highest contribution. However, we found that habitats had an effect on DNA-species diversity, where glide, riffle, and pool influenced the spatial structure of stonefly communities possibly due to a high species turnover.Among the habitats, the pool showed significant phylogenetic clustering, suggesting high levels of evolutionary adaptation and strong habitat filtering. This community structure may be caused by long-term stability of the habitat and the similar requirements for co-ocurring species.Our study shows the importance of different habitats on the spatial and phylogenetic structure of stonefly community assemblies and sheds light on the habitat-specific diversity that may help improve conservation practices.

2014 ◽  
Vol 281 (1778) ◽  
pp. 20133003 ◽  
Author(s):  
Angela L. Strecker ◽  
Julian D. Olden

Despite long-standing interest of terrestrial ecologists, freshwater ecosystems are a fertile, yet unappreciated, testing ground for applying community phylogenetics to uncover mechanisms of species assembly. We quantify phylogenetic clustering and overdispersion of native and non-native fishes of a large river basin in the American Southwest to test for the mechanisms (environmental filtering versus competitive exclusion) and spatial scales influencing community structure. Contrary to expectations, non-native species were phylogenetically clustered and related to natural environmental conditions, whereas native species were not phylogenetically structured, likely reflecting human-related changes to the basin. The species that are most invasive (in terms of ecological impacts) tended to be the most phylogenetically divergent from natives across watersheds, but not within watersheds, supporting the hypothesis that Darwin's naturalization conundrum is driven by the spatial scale. Phylogenetic distinctiveness may facilitate non-native establishment at regional scales, but environmental filtering restricts local membership to closely related species with physiological tolerances for current environments. By contrast, native species may have been phylogenetically clustered in historical times, but species loss from contemporary populations by anthropogenic activities has likely shaped the phylogenetic signal. Our study implies that fundamental mechanisms of community assembly have changed, with fundamental consequences for the biogeography of both native and non-native species.


2016 ◽  
Vol 3 (8) ◽  
pp. 160117 ◽  
Author(s):  
Anand Krishnan ◽  
Krishnapriya Tamma

The opposing effects of environmental filtering and competitive interactions may influence community assembly and coexistence of related species. Competition, both in the domain of ecological resources, and in the sensory domain (for example, acoustic interference) may also result in sympatric species evolving divergent traits and niches. Delineating these scenarios within communities requires understanding trait distributions and phylogenetic structure within the community, as well as patterns of trait evolution. We report that sympatric assemblages of Asian barbets (frugivorous canopy birds) consist of a random phylogenetic sample of species, but are divergent in both morphological and acoustic traits. Additionally, we find that morphology is more divergent than expected under Brownian evolution, whereas vocal frequency evolution is close to the pattern expected under Brownian motion (i.e. a random walk). Together, these patterns are consistent with a role for competition or competitive exclusion in driving community assembly. Phylogenetic patterns of morphological divergence between related species suggest that these traits are key in species coexistence. Because vocal frequency and size are correlated in barbets, we therefore hypothesize that frequency differences between sympatric barbets are a by-product of their divergent morphologies.


Paleobiology ◽  
2021 ◽  
Vol 47 (2) ◽  
pp. 171-177
Author(s):  
James C. Lamsdell ◽  
Curtis R. Congreve

The burgeoning field of phylogenetic paleoecology (Lamsdell et al. 2017) represents a synthesis of the related but differently focused fields of macroecology (Brown 1995) and macroevolution (Stanley 1975). Through a combination of the data and methods of both disciplines, phylogenetic paleoecology leverages phylogenetic theory and quantitative paleoecology to explain the temporal and spatial variation in species diversity, distribution, and disparity. Phylogenetic paleoecology is ideally situated to elucidate many fundamental issues in evolutionary biology, including the generation of new phenotypes and occupation of previously unexploited environments; the nature of relationships among character change, ecology, and evolutionary rates; determinants of the geographic distribution of species and clades; and the underlying phylogenetic signal of ecological selectivity in extinctions and radiations. This is because phylogenetic paleoecology explicitly recognizes and incorporates the quasi-independent nature of evolutionary and ecological data as expressed in the dual biological hierarchies (Eldredge and Salthe 1984; Congreve et al. 2018; Fig. 1), incorporating both as covarying factors rather than focusing on one and treating the other as error within the dataset.


2010 ◽  
Vol 277 (1698) ◽  
pp. 3327-3333 ◽  
Author(s):  
Manabu Sakamoto

Despite the great diversity in theropod craniomandibular morphology, the presence and distribution of biting function types across Theropoda has rarely been assessed. A novel method of biomechanical profiling using mechanical advantage computed for each biting position along the entirety of the tooth row was applied to 41 extinct theropod taxa. Multivariate ordination on the polynomial coefficients of the profiles reveals the distribution of theropod biting performance in function space. In particular, coelophysoids are found to occupy a unique region of function space, while tetanurans have a wide but continuous function space distribution. Further, the underlying phylogenetic structure and evolution of biting performance were investigated using phylogenetic comparative methods. There is a strong phylogenetic signal in theropod biomechanical profiles, indicating that evolution of biting performance does not depart from Brownian motion evolution. Reconstructions of ancestral function space occupation conform to this pattern, but phylogenetically unexpected major shifts in function space occupation can be observed at the origins of some clades. However, uncertainties surround ancestor estimates in some of these internal nodes, so inferences on the nature of these evolutionary changes must be viewed with caution.


2017 ◽  
Vol 284 (1861) ◽  
pp. 20170915 ◽  
Author(s):  
Brigitte Sommer ◽  
Eugenia M. Sampayo ◽  
Maria Beger ◽  
Peter L. Harrison ◽  
Russ C. Babcock ◽  
...  

Understanding how range-edge populations will respond to climate change is an urgent research priority. Here, we used a phylogenetic community ecology approach to examine how ecological and evolutionary processes shape biodiversity patterns of scleractinian corals at their high-latitude range limits in eastern Australia. We estimated phylogenetic signal in seven ecologically important functional traits and conducted tests of phylogenetic structure at local and regional scales using the net relatedness (NRI) and nearest taxon indices (NTI) for the presence/absence and abundance data. Regional tests showed light phylogenetic clustering, indicating that coral species found in this subtropical-to-temperate transition zone are more closely related to each other than are species on the nearby, more northerly Great Barrier Reef. Local tests revealed variable patterns of phylogenetic clustering and overdispersion and higher than expected phylogenetic turnover among sites. In combination, these results are broadly consistent with the hierarchical filtering model, whereby species pass through a regional climatic filter based on their tolerances for marginal conditions and subsequently segregate into local assemblages according to the relative strength of habitat filtering and species interactions. Conservatism of tested traits suggests that corals will likely track their niches with climate change. Nevertheless, high turnover of lineages among sites indicates that range shifts will probably vary among species and highlights the vulnerability and conservation significance of high-latitude reefs.


2009 ◽  
Vol 69 (3) ◽  
pp. 843-849 ◽  
Author(s):  
IA. Silva ◽  
MA. Batalha

Ecological communities are the result of not only present ecological processes, such as competition among species and environmental filtering, but also past and continuing evolutionary processes. Based on these assumptions, we may infer mechanisms of contemporary coexistence from the phylogenetic relationships of the species in a community. We studied the phylogenetic structure of plant communities in four cerrado sites, in southeastern Brazil. We calculated two raw phylogenetic distances among the species sampled. We estimated the phylogenetic structure by comparing the observed phylogenetic distances to the distribution of phylogenetic distances in null communities. We obtained null communities by randomizing the phylogenetic relationships of the regional pool of species. We found a phylogenetic overdispersion of the cerrado species. Phylogenetic overdispersion has several explanations, depending on the phylogenetic history of traits and contemporary ecological interactions. However, based on coexistence models between grasses and trees, density-dependent ecological forces, and the evolutionary history of the cerrado flora, we argue that the phylogenetic overdispersion of cerrado species is predominantly due to competitive interactions, herbivores and pathogen attacks, and ecological speciation. Future studies will need to include information on the phylogenetic history of plant traits.


2020 ◽  
Author(s):  
Yuanzhi Li ◽  
Margaret M Mayfield ◽  
Bin Wang ◽  
Junli Xiao ◽  
Kamil Kral ◽  
...  

Abstract It is known that biotic interactions are the key to species coexistence and maintenance of species diversity. Traditional studies focus overwhelmingly on pairwise interactions between organisms, ignoring complex higher-order interactions (HOIs). In this study, we present a novel method of calculating individual-level HOIs for trees, and use this method to test the importance of size- and distance-dependent individual-level HOIs to tree performance in a 25-ha temperate forest dynamic plot. We found that full HOIs-inclusive models improved our ability to model and predict the survival and growth of trees, providing empirical evidence that HOIs strongly influence tree performance in this temperate forest. Specifically, assessed HOIs mitigate the competitive direct effects of neighbours on survival and growth of focal trees. Our study lays a foundation for future investigations of the prevalence and relative importance of HOIs in global forests and their impact on species diversity.


2019 ◽  
Author(s):  
Hideyuki Doi ◽  
Ryutei Inui ◽  
Shunsuke Matsuoka ◽  
Yoshihisa Akamatsu ◽  
Masuji Goto ◽  
...  

AbstractInformation on alpha (local), beta (between habitats), and gamma (regional) diversity is fundamental to understanding biodiversity as well as the function and stability of community dynamics. The methods like environmental DNA (eDNA) metabarcoding are currently considered useful to investigate biodiversity.We compared the performance of eDNA metabarcoding with visual and capture surveys in estimating alpha/gamma diversity and the variation of the community assemblages of river fish communities, particularly considering community nestedness and turnover.In five rivers across west Japan, with comparing to visual/capture surveys, eDNA metabarcoding detected more species in the study sites, consequently the overall number of species in the region (i.e., gamma diversity) was higher. In particular, the species found by visual/capture surveys were encompassed by those by eDNA metabarcoding.With analyzing the community assemblages between the rivers, we showed the different results between the both methods. While, in the same river, the nestedness and species turnover changing from upstream to downstream did not significantly differ between the both methods. Our results suggest that eDNA metabarcoding may be suitable method, especially for understanding regional community patterns, for fish monitoring in rivers.


Diversity ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 456
Author(s):  
Lacy D. Chick ◽  
Jean-Philippe Lessard ◽  
Robert R. Dunn ◽  
Nathan J. Sanders

A fundamental tenet of biogeography is that abiotic and biotic factors interact to shape the distributions of species and the organization of communities, with interactions being more important in benign environments, and environmental filtering more important in stressful environments. This pattern is often inferred using large databases or phylogenetic signal, but physiological mechanisms underlying such patterns are rarely examined. We focused on 18 ant species at 29 sites along an extensive elevational gradient, coupling experimental data on critical thermal limits, null model analyses, and observational data of density and abundance to elucidate factors governing species’ elevational range limits. Thermal tolerance data showed that environmental conditions were likely to be more important in colder, more stressful environments, where physiology was the most important constraint on the distribution and density of ant species. Conversely, the evidence for species interactions was strongest in warmer, more benign conditions, as indicated by our observational data and null model analyses. Our results provide a strong test that biotic interactions drive the distributions and density of species in warm climates, but that environmental filtering predominates at colder, high-elevation sites. Such a pattern suggests that the responses of species to climate change are likely to be context-dependent and more specifically, geographically-dependent.


Sign in / Sign up

Export Citation Format

Share Document