scholarly journals Triceps surae torque-length relationships relevant for walking activity levels with and without an ankle exoskeleton

2019 ◽  
Author(s):  
Anthony L. Hessel ◽  
Brent J. Raiteri ◽  
Michael J. Marsh ◽  
Daniel Hahn

AbstractAnkle exoskeletons have been developed to assist walking by offloading the plantar flexors work requirements, which reduces muscle activity level. However, reduced muscle activity alters plantar flexor muscle-tendon unit dynamics in a way that is poorly understood. We therefore evaluated torque-fascicle length properties of the soleus and lateral gastrocnemius during voluntary contractions at simulated activity levels typical during late stance with and without an ankle exoskeleton. Soleus activity levels (100, 30, and 22% maximal voluntary activity) were produced by participants via visual electromyography feedback at ankle angles ranging from −10° plantar flexion to 35° dorsiflexion. Using dynamometry and ultrasound imaging, torque-fascicle length data of the soleus and lateral gastrocnemius were produced. The results indicate that muscle activity reductions observed with an exoskeleton shift the torque-angle and torque-fascicle length curves to more dorsiflexed ankle angles and longer fascicle lengths where no descending limb is physiologically possible. This shift is in line with previous simulations that predicted a similar increase in the operating fascicle range when wearing an exoskeleton. These data suggest that a small reduction in muscle activity causes changes to torque-fascicle length properties, which has implications for the design and testing of future ankle exoskeletons for assisted walking.Significance StatementAssistive lower-limb exoskeletons reduce the metabolic cost of walking by reducing the positive work requirements of the plantar flexor muscles. However, if the exoskeleton reduces plantar flexor muscle activity too much, then the metabolic benefit is lost. The biological reasons for this are unclear and hinder further exoskeleton development. This research study is the first to directly evaluate if a reduction in plantar flexor muscle activity similar to that caused by wearing an exoskeleton affects muscle function. We found that reduced muscle activity changes the torque-length properties of two plantar flexors, which could explain why reducing muscle activity too much can increase metabolic cost.

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
John W. Ramsay ◽  
Thomas S. Buchanan ◽  
Jill S. Higginson

Poststroke plantar flexor muscle weakness has been attributed to muscle atrophy and impaired activation, which cannot collectively explain the limitations in force-generating capability of the entire muscle group. It is of interest whether changes in poststroke plantar flexor muscle fascicle length and pennation angle influence the individual force-generating capability and whether plantar flexor weakness is due to uniform changes in individual muscle force contributions. Fascicle lengths and pennation angles for the soleus, medial, and lateral gastrocnemius were measured using ultrasound and compared between ten hemiparetic poststroke subjects and ten healthy controls. Physiological cross-sectional areas and force contributions to poststroke plantar flexor torque were estimated for each muscle. No statistical differences were observed for any muscle fascicle lengths or for the lateral gastrocnemius and soleus pennation angles between paretic, nonparetic, and healthy limbs. There was a significant decrease (P<0.05) in the paretic medial gastrocnemius pennation angle compared to both nonparetic and healthy limbs. Physiological cross-sectional areas and force contributions were smaller on the paretic side. Additionally, bilateral muscle contributions to plantar flexor torque remained the same. While the architecture of each individual plantar flexor muscle is affected differently after stroke, the relative contribution of each muscle remains the same.


2015 ◽  
Vol 118 (10) ◽  
pp. 1193-1199 ◽  
Author(s):  
Brent J. Raiteri ◽  
Andrew G. Cresswell ◽  
Glen A. Lichtwark

Because of the approximate linear relationship between muscle force and muscle activity, muscle forces are often estimated during maximal voluntary isometric contractions (MVICs) from torque and surface electromyography (sEMG) measurements. However, sEMG recordings from a target muscle may contain cross-talk originating from nearby muscles, which could lead to erroneous force estimates. Here we used ultrasound imaging to measure in vivo muscle fascicle length ( Lf) changes and sEMG to measure muscle activity of the tibialis anterior, medial gastrocnemius, lateral gastrocnemius, and soleus muscles during ramp MVICs in plantar and dorsiflexion directions ( n = 8). After correcting longitudinal Lfchanges for ankle rotation, the antagonist Lfat peak antagonist root-mean-square (RMS) amplitude were significantly longer than the agonist Lfat this sEMG-matched level. On average, Lfshortened from resting length by 1.29 to 2.90 mm when muscles acted as agonists and lengthened from resting length by 0.43 to 1.16 mm when muscles acted as antagonists (depending on the muscle of interest). The lack of fascicle shortening when muscles acted as antagonists indicates that cocontraction was likely to be negligible, despite cocontraction as determined by sEMG of between 7 and 23% MVIC across all muscles. Different interelectrode distances (IEDs) over the plantar flexors revealed significantly higher antagonist RMS amplitudes for the 4-cm IEDs compared with the 2-cm IEDs, which further indicates that cross-talk was present. Consequently, investigators should be wary about performing agonist torque corrections for isometric plantar flexion and dorsiflexion based on the antagonist sEMG trace and predicted antagonist moment.


2020 ◽  
pp. jeb.235614
Author(s):  
Anthony L. Hessel ◽  
Brent J. Raiteri ◽  
Michael J. Marsh ◽  
Daniel Hahn

Much of our understanding of in vivo skeletal muscle properties is based on studies performed under maximal activation, which is problematic because muscles are rarely activated maximally during movements such as walking. Currently, force-length properties of the human triceps surae at submaximal voluntary muscle activity levels are not characterized. We therefore evaluated plantar flexor torque/force-ankle angle and torque/force-fascicle length properties of the soleus and lateral gastrocnemius muscles during voluntary contractions at three activity levels: 100, 30, and 22% of maximal voluntary contraction. Soleus activity levels were controlled by participants via real-time electromyography feedback and contractions were performed at ankle angles ranging from 10° plantar flexion to 35° dorsiflexion. Using dynamometry and ultrasound imaging, torque-fascicle length curves of the soleus and lateral gastrocnemius muscles were constructed. The results indicate that small muscle activity reductions shift the torque/force-angle and torque/force-fascicle length curves of these muscles to more dorsiflexed ankle angles and longer fascicle lengths (from 3 to 20% optimal fascicle length, depending on ankle angle). The shift in the torque- and force-fascicle length curves during submaximal voluntary contraction have potential implications for human locomotion (e.g. walking) as the operating range of fascicles shifts to the ascending limb, where muscle force capacity is reduced by at least 15%. These data demonstrate the need to match activity levels during construction of the torque- and force-fascicle length curves to activity levels achieved during movement to better characterize the lengths that muscles operate at relative to their optimum during a specific task.


Author(s):  
Gwendolyn M. Bryan ◽  
Patrick W. Franks ◽  
Seungmoon Song ◽  
Ricardo Reyes ◽  
Meghan P. O’Donovan ◽  
...  

Abstract Background Load carriage is common in a wide range of professions, but prolonged load carriage is associated with increased fatigue and overuse injuries. Exoskeletons could improve the quality of life of these professionals by reducing metabolic cost to combat fatigue and reducing muscle activity to prevent injuries. Current exoskeletons have reduced the metabolic cost of loaded walking by up to 22% relative to walking in the device with no assistance when assisting one or two joints. Greater metabolic reductions may be possible with optimized assistance of the entire leg. Methods We used human-in the-loop optimization to optimize hip-knee-ankle exoskeleton assistance with no additional load, a light load (15% of body weight), and a heavy load (30% of body weight) for three participants. All loads were applied through a weight vest with an attached waist belt. We measured metabolic cost, exoskeleton assistance, kinematics, and muscle activity. We performed Friedman’s tests to analyze trends across worn loads and paired t-tests to determine whether changes from the unassisted conditions to the assisted conditions were significant. Results Exoskeleton assistance reduced the metabolic cost of walking relative to walking in the device without assistance for all tested conditions. Exoskeleton assistance reduced the metabolic cost of walking by 48% with no load (p = 0.05), 41% with the light load (p = 0.01), and 43% with the heavy load (p = 0.04). The smaller metabolic reduction with the light load may be due to insufficient participant training or lack of optimizer convergence. The total applied positive power was similar for all tested conditions, and the positive knee power decreased slightly as load increased. Optimized torque timing parameters were consistent across participants and load conditions while optimized magnitude parameters varied. Conclusions Whole-leg exoskeleton assistance can reduce the metabolic cost of walking while carrying a range of loads. The consistent optimized timing parameters across participants and conditions suggest that metabolic cost reductions are sensitive to torque timing. The variable torque magnitude parameters could imply that torque magnitude should be customized to the individual, or that there is a range of useful torque magnitudes. Future work should test whether applying the load to the exoskeleton rather than the person’s torso results in larger benefits.


2014 ◽  
Vol 7 (6) ◽  
pp. 460-465 ◽  
Author(s):  
Matthew T. Crill ◽  
Gregory Berlet ◽  
Christopher Hyer

Eccentric training for Achilles tendinosis (AT) has been reported to significantly improve patient symptoms. There has been no biomechanical explanation on the mechanism for specific rehabilitation technique. The purpose of this study was to determine changes in muscle architecture that occurred as a result of Achilles tendinosis injury and a subsequent eccentric rehabilitation program. Twenty-five patients (age, 53.3 ± 17.5 years) diagnosed with AT participated in 6 weeks of rehabilitation. Specific exercises for the ankle plantar flexors consisted of maximal load eccentric muscle action using 3 sets of 15 repetitions. Patients also completed a protocol for AT, which consisting of traditional rehabilitation. Medial gastrocnemius (GM) and lateral gastrocnemius (GL) muscle fascicle length and thickness were measured with ultrasound at 2-week intervals from initial treatment day to the end of 6 weeks of rehabilitation. Medial gastrocnemius fascicle length increased (45.1 ± 10.5 mm to 51.4 ± 10.5 mm; P = .22) between the initial day of rehabilitation and after 6 weeks of rehabilitation. But, GM thickness (16.3 ± 3.5 mm to 16.8 ± 2.0 mm), GL fascicle length (47.2 ± 10.0 mm to 47.1 ± 7.4 mm), and GL thickness (14.9 ± 5.2 mm to 14.4 ± 2.7 mm) did not change as a result of rehabilitation. A 6-week eccentric-biased exercise increased the GM muscle fascicle length by 12%, but GM thickness, GL fascicle length, and GL thickness did not change as a result of rehabilitation. Eccentric training for the treatment of AT is well recognized, but the mechanism of action has not been previously reported. A 6-week eccentric training protocol increased the GM muscle fascicle length by 12%, and this correlated with improvement in a validated patient outcome scoring system. Further study is warranted to determine a predictive relationship between improvement of GM fascicle length and outcome scores. Levels of Evidence: Therapeutic, Level IV: Case series


2006 ◽  
Vol 101 (1) ◽  
pp. 256-263 ◽  
Author(s):  
Brian C. Clark ◽  
Bo Fernhall ◽  
Lori L. Ploutz-Snyder

Strength loss following disuse may result from alterations in muscle and/or neurological properties. In this paper, we report our findings on human plantar flexor muscle properties following 4 wk of limb suspension (unilateral lower limb suspension), along with the effect of applied ischemia (Isc) on these properties. In the companion paper (Part II), we report our findings on the changes in neurological properties. Measurements of voluntary and evoked forces, the compound muscle fiber action potential (CMAP), and muscle cross-sectional area (CSA) were collected before and after 4 wk of unilateral lower limb suspension in adults ( n = 18; 19–28 yr). A subset of subjects ( n = 6) received applications of Isc 3 days/wk (3 sets; 5-min duration). In the subjects not receiving Isc, the loss in CSA and strength was as expected (∼9 and 14%). We observed a 30% slowing in the duration of the CMAP, a 10% decrease in evoked doublet force, a 12% increase in the twitch-to-doublet force ratio, and an altered postactivation potentiation response (11% increase in the postactivation potentiation-to-doublet ratio). We also detected a 10% slowing in the ability of the plantar flexor to develop force during the initial phase of an evoked contraction, along with a 6% reduction in in vivo specific doublet force. In the Isc subjects, no preservation was observed in strength or the evoked muscle properties. However, the Isc group did maintain CSA of the lateral gastrocnemius, as the control subjects’ lateral gastrocnemius atrophied 10.2%, whereas the subjects receiving Isc atrophied 4.7%. Additionally, Isc abolished the unweighting-induced slowing in the CMAP. These findings suggest that unweighting alters the contractile properties involved in the excitation-contraction coupling processes and that Isc impacts the sarcolemma.


2021 ◽  
Vol 288 (1947) ◽  
Author(s):  
Taylor J. M. Dick ◽  
Christofer J. Clemente ◽  
Laksh K. Punith ◽  
Gregory S. Sawicki

In our everyday lives, we negotiate complex and unpredictable environments. Yet, much of our knowledge regarding locomotion has come from studies conducted under steady-state conditions. We have previously shown that humans rely on the ankle joint to absorb energy and recover from perturbations; however, the muscle–tendon unit (MTU) behaviour and motor control strategies that accompany these joint-level responses are not yet understood. In this study, we determined how neuromuscular control and plantar flexor MTU dynamics are modulated to maintain stability during unexpected vertical perturbations. Participants performed steady-state hopping and, at an unknown time, we elicited an unexpected perturbation via rapid removal of a platform. In addition to kinematics and kinetics, we measured gastrocnemius and soleus muscle activations using electromyography and in vivo fascicle dynamics using B-mode ultrasound. Here, we show that an unexpected drop in ground height introduces an automatic phase shift in the timing of plantar flexor muscle activity relative to MTU length changes. This altered timing initiates a cascade of responses including increased MTU and fascicle length changes and increased muscle forces which, when taken together, enables the plantar flexors to effectively dissipate energy. Our results also show another mechanism, whereby increased co-activation of the plantar- and dorsiflexors enables shortening of the plantar flexor fascicles prior to ground contact. This co-activation improves the capacity of the plantar flexors to rapidly absorb energy upon ground contact, and may also aid in the avoidance of potentially damaging muscle strains. Our study provides novel insight into how humans alter their neural control to modulate in vivo muscle–tendon interaction dynamics in response to unexpected perturbations. These data provide essential insight to help guide design of lower-limb assistive devices that can perform within varied and unpredictable environments.


2021 ◽  
Author(s):  
Gwendolyn M Bryan ◽  
Patrick W. Franks ◽  
Seungmoon Song ◽  
Alexandra S Voloshina ◽  
Ricardo Reyes ◽  
...  

Background: Effective autonomous exoskeletons will need to be useful at a variety of walking speeds, but we do not know how optimal exoskeleton assistance should change with speed. Optimal exoskeleton assistance may increase with speed similar to biological torque changes or a well-tuned assistance profile may be effective at a variety of speeds. Methods: We optimized hip-knee-ankle exoskeleton assistance to reduce metabolic cost for three participants walking at 1.0 m/s, 1.25 m/s and 1.5 m/s. We measured metabolic cost, muscle activity, exoskeleton assistance and kinematics. We performed two tailed paired t-tests to determine significance. Results: Exoskeleton assistance reduced the metabolic cost of walking compared to wearing the exoskeleton with no torque applied by 26%, 47% and 50% at 1.0, 1.25 and 1.5 m/s, respectively. For all three participants, optimized exoskeleton ankle torque was the smallest for slow walking, while hip and knee torque changed slightly with speed in ways that varied across participants. Total applied positive power increased with speed for all three participants, largely due to increased joint velocities, which consistently increased with speed. Conclusions: Exoskeleton assistance is effective at a range of speeds and is most effective at medium and fast walking speeds. Exoskeleton assistance was less effective for slow walking, which may explain the limited success in reducing metabolic cost for patient populations through exoskeleton assistance. Exoskeleton designers may have more success when targeting activities and groups with faster walking speeds. Speed-related changes in optimized exoskeleton assistance varied by participant, indicating either the benefit of participant-specific tuning or that a wide variety of torque profiles are similarly effective.


2021 ◽  
Author(s):  
Gwendolyn M Bryan ◽  
Patrick Franks ◽  
Seungmoon Song ◽  
Ricardo Reyes ◽  
Meghan O’Donovan ◽  
...  

Abstract BackgroundLoad carriage is a typical activity in a wide range of professions, but prolonged load carriage is associated with increased fatigue and overuse injuries. Exoskeletons could improve the quality of life of these professionals by reducing metabolic cost to combat fatigue and reducing muscle activity to prevent injuries. Current exoskeletons have reduced the metabolic cost of loaded walking by up to 23% when assisting one or two joints. Greater metabolic reductions may be possible with optimized assistance of the entire leg. MethodsWe used human-in the-loop optimization to optimize hip-knee-ankle exoskeleton assistance with no additional load, a light load (15% of body weight), and a heavy load (30% of body weight) for three participants. All loads were applied through a weight vest with an attached waist belt. We measured metabolic cost, exoskeleton assistance, kinematics, and muscle activity. We performed one-tailed paired t-tests to determine significant reductions for metabolic cost and muscle activity, and we performed an analysis of variance (ANOVA) to determine significant changes across load conditions for metabolic cost and applied power. ResultsExoskeleton assistance reduced the metabolic cost of walking relative to walking in the device without assistance for all tested conditions. Exoskeleton assistance reduced the metabolic cost of walking by 47% with no load (p = 0.02), 35% with the light load (p = 0.03), and 43% with the heavy load (p = 0.02). The smaller metabolic reduction with the light load may be due to insufficient participant training or lack of optimizer convergence. The total applied positive power was similar for all tested conditions, and the positive knee power decreased slightly as load increased. Optimized torque timing parameters were consistent across participants and load conditions while optimized magnitude parameters varied. ConclusionsWhole-leg exoskeleton assistance can reduce the metabolic cost of walking while carrying a range of loads. The consistent optimized timing parameters suggest that metabolic cost reductions are sensitive to torque timing. The variable torque magnitude parameters could imply that torque magnitude should be customized to the individual, or that there is a range of useful torque magnitudes. Future work should test whether applying the load to the exoskeleton rather than the person's torso results in larger benefits.


Geriatrics ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 114
Author(s):  
Tadayoshi Minamisawa ◽  
Noboru Chiba ◽  
Eizaburo Suzuki

Our aim was to clarify the effect of aging on the coherence of electromyograms of plantar flexor pairs during bipedal stance and to clarify the relationship between coherence and center-of-mass acceleration (COMacc). The subjects were 16 adults and 18 older adults. Intra- and intermuscular coherence and phase analyses were used to analyze the muscle pairs of bilateral and unilateral plantar flexor muscle groups. The relationship between coherence value and anterior–posterior COMacc of the plantar flexor muscle pairs was also examined to determine whether the connectivity of the lower limb muscle pairs is functionally important. The older adults showed higher coherence in the frequency range of 0–4 Hz for muscle pairs than the younger adults. In phase analysis, the older adults showed a phase difference between bilateral heteronymous muscle pairs in the frequency range of 0–6 Hz, which was one of the characteristics not seen in the younger adults. Correlation analysis showed that all the muscle pairs were moderately correlated with COMacc in the older adults. Not only does aging affects the organization of the bilateral and unilateral postural muscle activity of the plantar flexors during bipedal stance, but such organization may also be related to the increased COMacc characteristics of older adults.


Sign in / Sign up

Export Citation Format

Share Document