scholarly journals Generalized Multi-SNP Mediation Intersection-Union Test

2019 ◽  
Author(s):  
Wujuan Zhong ◽  
Toni Darville ◽  
Xiaojing Zheng ◽  
Jason Fine ◽  
Yun Li

SummaryTo elucidate the molecular mechanisms underlying genetic variants identified from genome-wide association studies (GWAS) for a variety of phenotypic traits encompassing binary, continuous, count, and survival outcomes, we propose a novel and flexible method to test for mediation that can simultaneously accommodate multiple genetic variants and different types of outcome variables. Specifically, we employ the intersection-union test approach combined with likelihood ratio test to detect mediation effect of multiple genetic variants via some mediator (for example, the expression of a neighboring gene) on outcome. We fit high-dimensional generalized linear mixed models under the mediation framework, separately under the null and alternative hypothesis. We leverage Laplace approximation to compute the marginal likelihood of outcome and use coordinate descent algorithm to estimate corresponding parameters. Our extensive simulations demonstrate the validity of our proposed method and substantial, up to 97%, power gains over alternative methods. Applications to real data for the study of Chlamydia trachomatis infection further showcase advantages of our method. We believe our proposed method will be of value and general interest in this post-GWAS era to disentangle the potential causal mechanism from DNA to phenotype for new drug discovery and personalized medicine.

2019 ◽  
Vol 35 (22) ◽  
pp. 4724-4729 ◽  
Author(s):  
Wujuan Zhong ◽  
Cassandra N Spracklen ◽  
Karen L Mohlke ◽  
Xiaojing Zheng ◽  
Jason Fine ◽  
...  

Abstract Summary Tens of thousands of reproducibly identified GWAS (Genome-Wide Association Studies) variants, with the vast majority falling in non-coding regions resulting in no eventual protein products, call urgently for mechanistic interpretations. Although numerous methods exist, there are few, if any methods, for simultaneously testing the mediation effects of multiple correlated SNPs via some mediator (e.g. the expression of a gene in the neighborhood) on phenotypic outcome. We propose multi-SNP mediation intersection-union test (SMUT) to fill in this methodological gap. Our extensive simulations demonstrate the validity of SMUT as well as substantial, up to 92%, power gains over alternative methods. In addition, SMUT confirmed known mediators in a real dataset of Finns for plasma adiponectin level, which were missed by many alternative methods. We believe SMUT will become a useful tool to generate mechanistic hypotheses underlying GWAS variants, facilitating functional follow-up. Availability and implementation The R package SMUT is publicly available from CRAN at https://CRAN.R-project.org/package=SMUT. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Qing Cheng ◽  
Yi Yang ◽  
Xingjie Shi ◽  
Kar-Fu Yeung ◽  
Can Yang ◽  
...  

Abstract The proliferation of genome-wide association studies (GWAS) has prompted the use of two-sample Mendelian randomization (MR) with genetic variants as instrumental variables (IVs) for drawing reliable causal relationships between health risk factors and disease outcomes. However, the unique features of GWAS demand that MR methods account for both linkage disequilibrium (LD) and ubiquitously existing horizontal pleiotropy among complex traits, which is the phenomenon wherein a variant affects the outcome through mechanisms other than exclusively through the exposure. Therefore, statistical methods that fail to consider LD and horizontal pleiotropy can lead to biased estimates and false-positive causal relationships. To overcome these limitations, we proposed a probabilistic model for MR analysis in identifying the causal effects between risk factors and disease outcomes using GWAS summary statistics in the presence of LD and to properly account for horizontal pleiotropy among genetic variants (MR-LDP) and develop a computationally efficient algorithm to make the causal inference. We then conducted comprehensive simulation studies to demonstrate the advantages of MR-LDP over the existing methods. Moreover, we used two real exposure–outcome pairs to validate the results from MR-LDP compared with alternative methods, showing that our method is more efficient in using all-instrumental variants in LD. By further applying MR-LDP to lipid traits and body mass index (BMI) as risk factors for complex diseases, we identified multiple pairs of significant causal relationships, including a protective effect of high-density lipoprotein cholesterol on peripheral vascular disease and a positive causal effect of BMI on hemorrhoids.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yi Yang ◽  
Kar-Fu Yeung ◽  
Jin Liu

Motivation: Genome-wide association studies (GWAS) have achieved remarkable success in identifying SNP-trait associations in the last decade. However, it is challenging to identify the mechanisms that connect the genetic variants with complex traits as the majority of GWAS associations are in non-coding regions. Methods that integrate genomic and transcriptomic data allow us to investigate how genetic variants may affect a trait through their effect on gene expression. These include CoMM and CoMM-S2, likelihood-ratio-based methods that integrate GWAS and eQTL studies to assess expression-trait association. However, their reliance on individual-level eQTL data render them inapplicable when only summary-level eQTL results, such as those from large-scale eQTL analyses, are available.Result: We develop an efficient probabilistic model, CoMM-S4, to explore the expression-trait association using summary-level eQTL and GWAS datasets. Compared with CoMM-S2, which uses individual-level eQTL data, CoMM-S4 requires only summary-level eQTL data. To test expression-trait association, an efficient variational Bayesian EM algorithm and a likelihood ratio test were constructed. We applied CoMM-S4 to both simulated and real data. The simulation results demonstrate that CoMM-S4 can perform as well as CoMM-S2 and S-PrediXcan, and analyses using GWAS summary statistics from Biobank Japan and eQTL summary statistics from eQTLGen and GTEx suggest novel susceptibility loci for cardiovascular diseases and osteoporosis.Availability and implementation: The developed R package is available at https://github.com/gordonliu810822/CoMM.


Mathematics ◽  
2021 ◽  
Vol 9 (23) ◽  
pp. 3083
Author(s):  
Lorena Alonso ◽  
Ignasi Morán ◽  
Cecilia Salvoro ◽  
David Torrents

The identification and characterisation of genomic changes (variants) that can lead to human diseases is one of the central aims of biomedical research. The generation of catalogues of genetic variants that have an impact on specific diseases is the basis of Personalised Medicine, where diagnoses and treatment protocols are selected according to each patient’s profile. In this context, the study of complex diseases, such as Type 2 diabetes or cardiovascular alterations, is fundamental. However, these diseases result from the combination of multiple genetic and environmental factors, which makes the discovery of causal variants particularly challenging at a statistical and computational level. Genome-Wide Association Studies (GWAS), which are based on the statistical analysis of genetic variant frequencies across non-diseased and diseased individuals, have been successful in finding genetic variants that are associated to specific diseases or phenotypic traits. But GWAS methodology is limited when considering important genetic aspects of the disease and has not yet resulted in meaningful translation to clinical practice. This review presents an outlook on the study of the link between genetics and complex phenotypes. We first present an overview of the past and current statistical methods used in the field. Next, we discuss current practices and their main limitations. Finally, we describe the open challenges that remain and that might benefit greatly from further mathematical developments.


2018 ◽  
Author(s):  
Wujuan Zhong ◽  
Cassandra N. Spracklen ◽  
Karen L. Mohlke ◽  
Xiaojing Zheng ◽  
Jason Fine ◽  
...  

ABSTRACTTens of thousands of reproducibly identified GWAS (Genome-Wide Association Studies) variants, with the vast majority falling in non-coding regions resulting in no eventual protein products, call urgently for mechanistic interpretations. Although numerous methods exist, there are few, if any methods, for simultaneously testing the mediation effects of multiple correlated SNPs via some mediator (for example, the expression of a gene in the neighborhood) on phenotypic outcome. We propose SMUT, multi-SNP Mediation intersection-Union Test to fill in this methodological gap. Our extensive simulations demonstrate the validity of SMUT as well as substantial, up to 92%, power gains over alternative methods. In addition, SMUT confirmed known mediators in a real dataset of Finns for plasma adiponectin level, which were missed by many alternative methods. We believe SMUT will become a useful tool to generate mechanistic hypotheses underlying GWAS variants, facilitating functional follow-up. The R package SMUT is publicly available from CRAN at https://CRAN.R-project.org/package=SMUT.


2019 ◽  
Vol 26 (34) ◽  
pp. 6207-6221 ◽  
Author(s):  
Innocenzo Rainero ◽  
Alessandro Vacca ◽  
Flora Govone ◽  
Annalisa Gai ◽  
Lorenzo Pinessi ◽  
...  

Migraine is a common, chronic neurovascular disorder caused by a complex interaction between genetic and environmental risk factors. In the last two decades, molecular genetics of migraine have been intensively investigated. In a few cases, migraine is transmitted as a monogenic disorder, and the disease phenotype cosegregates with mutations in different genes like CACNA1A, ATP1A2, SCN1A, KCNK18, and NOTCH3. In the common forms of migraine, candidate genes as well as genome-wide association studies have shown that a large number of genetic variants may increase the risk of developing migraine. At present, few studies investigated the genotype-phenotype correlation in patients with migraine. The purpose of this review was to discuss recent studies investigating the relationship between different genetic variants and the clinical characteristics of migraine. Analysis of genotype-phenotype correlations in migraineurs is complicated by several confounding factors and, to date, only polymorphisms of the MTHFR gene have been shown to have an effect on migraine phenotype. Additional genomic studies and network analyses are needed to clarify the complex pathways underlying migraine and its clinical phenotypes.


2019 ◽  
Vol 17 (06) ◽  
pp. 1940012
Author(s):  
Yuan Liu ◽  
Yongchao Ma ◽  
Evan Salsman ◽  
Frank A. Manthey ◽  
Elias M. Elias ◽  
...  

Mapping short reads to a reference genome is an essential step in many next-generation sequencing (NGS) analyses. In plants with large genomes, a large fraction of the reads can align to multiple locations of the genome with equally good alignment scores. How to map these ambiguous reads to the genome is a challenging problem with big impacts on the downstream analysis. Traditionally, the default method is to assign an ambiguous read randomly to one of the many potential locations. In this study, we explore two alternative methods that are based on the hypothesis that the possibility of an ambiguous read being generated by a location is proportional to the total number of reads produced by that location: (1) the enrichment method that assigns an ambiguous read to the location that has produced the most reads among all the potential locations, (2) the probability method that assigns an ambiguous read to a location based on a probability proportional to the number of reads the location produces. We systematically compared the performance of the proposed methods with that of the default random method. Our results showed that the enrichment method produced better results than the default random method and the probability method in the discovery of single nucleotide polymorphisms (SNPs). Not only did it produce more SNP markers, but it also produced SNP markers with better quality, which was demonstrated using multiple mainstay genomic analyses, including genome-wide association studies (GWAS), minor allele distribution, population structure, and genomic prediction.


2020 ◽  
Vol 07 (03) ◽  
pp. 075-079
Author(s):  
Mahamad Irfanulla Khan ◽  
Prashanth CS

AbstractCleft lip with or without cleft palate (CL/P) is one of the most common congenital malformations in humans involving various genetic and environmental risk factors. The prevalence of CL/P varies according to geographical location, ethnicity, race, gender, and socioeconomic status, affecting approximately 1 in 800 live births worldwide. Genetic studies aim to understand the mechanisms contributory to a phenotype by measuring the association between genetic variants and also between genetic variants and phenotype population. Genome-wide association studies are standard tools used to discover genetic loci related to a trait of interest. Genetic association studies are generally divided into two main design types: population-based studies and family-based studies. The epidemiological population-based studies comprise unrelated individuals that directly compare the frequency of genetic variants between (usually independent) cases and controls. The alternative to population-based studies (case–control designs) includes various family-based study designs that comprise related individuals. An example of such a study is a case–parent trio design study, which is commonly employed in genetics to identify the variants underlying complex human disease where transmission of alleles from parents to offspring is studied. This article describes the fundamentals of case–parent trio study, trio design and its significances, statistical methods, and limitations of the trio studies.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Shuquan Rao ◽  
Yao Yao ◽  
Daniel E. Bauer

AbstractGenome-wide association studies (GWAS) have uncovered thousands of genetic variants that influence risk for human diseases and traits. Yet understanding the mechanisms by which these genetic variants, mainly noncoding, have an impact on associated diseases and traits remains a significant hurdle. In this review, we discuss emerging experimental approaches that are being applied for functional studies of causal variants and translational advances from GWAS findings to disease prevention and treatment. We highlight the use of genome editing technologies in GWAS functional studies to modify genomic sequences, with proof-of-principle examples. We discuss the challenges in interrogating causal variants, points for consideration in experimental design and interpretation of GWAS locus mechanisms, and the potential for novel therapeutic opportunities. With the accumulation of knowledge of functional genetics, therapeutic genome editing based on GWAS discoveries will become increasingly feasible.


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 599
Author(s):  
Miguel A. Gutierrez-Reinoso ◽  
Pedro M. Aponte ◽  
Manuel Garcia-Herreros

Genomics comprises a set of current and valuable technologies implemented as selection tools in dairy cattle commercial breeding programs. The intensive progeny testing for production and reproductive traits based on genomic breeding values (GEBVs) has been crucial to increasing dairy cattle productivity. The knowledge of key genes and haplotypes, including their regulation mechanisms, as markers for productivity traits, may improve the strategies on the present and future for dairy cattle selection. Genome-wide association studies (GWAS) such as quantitative trait loci (QTL), single nucleotide polymorphisms (SNPs), or single-step genomic best linear unbiased prediction (ssGBLUP) methods have already been included in global dairy programs for the estimation of marker-assisted selection-derived effects. The increase in genetic progress based on genomic predicting accuracy has also contributed to the understanding of genetic effects in dairy cattle offspring. However, the crossing within inbred-lines critically increased homozygosis with accumulated negative effects of inbreeding like a decline in reproductive performance. Thus, inaccurate-biased estimations based on empirical-conventional models of dairy production systems face an increased risk of providing suboptimal results derived from errors in the selection of candidates of high genetic merit-based just on low-heritability phenotypic traits. This extends the generation intervals and increases costs due to the significant reduction of genetic gains. The remarkable progress of genomic prediction increases the accurate selection of superior candidates. The scope of the present review is to summarize and discuss the advances and challenges of genomic tools for dairy cattle selection for optimizing breeding programs and controlling negative inbreeding depression effects on productivity and consequently, achieving economic-effective advances in food production efficiency. Particular attention is given to the potential genomic selection-derived results to facilitate precision management on modern dairy farms, including an overview of novel genome editing methodologies as perspectives toward the future.


Sign in / Sign up

Export Citation Format

Share Document