scholarly journals Conserved serotonergic background of experience-dependent challenge-responding in zebrafish (Danio rerio)

2019 ◽  
Author(s):  
Zoltán K Varga ◽  
Diána Pejtsik ◽  
László Biró ◽  
Áron Zsigmond ◽  
Máté Varga ◽  
...  

AbstractForming effective responses to threatening stimuli requires the adequate and coordinated emergence of stress-related internal states. Such ability depends on early-life experiences and, in connection, the adequate formation of neuromodulatory systems, particularly serotonergic signaling. Here, we assess the serotonergic background of experience-dependent behavioral responsiveness employing a zebrafish (Danio rerio) model. For the first time, we have characterized a period during the behavioral metamorphosis in which zebrafish are highly reactive to their environment. Absence of social stimuli during this phase established by isolated rearing fundamentally altered the behavioral phenotype of post-metamorphic zebrafish in a challenge-specific manner, partially due to a decline in responsiveness and an inability to develop stress-associated arousal state. In line with this, isolation differently affected whole-brain 5-HT signaling in resting and stress-induced conditions, an effect that was present at the level of the dorsal pallium and was negatively associated with responsiveness. Administration of the 5HT1AR partial agonist buspirone prevented the isolation-induced serotonin response to novelty in the forebrain and rescued stress-induced arousal along with challenge-induced behaviors, which altogether indicates a functional connection between these changes. In summary, there is a consistent negative association between behavioral responsiveness and serotonergic signaling in zebrafish, which is well recognizable through the modifying effects of developmental perturbation and pharmacological manipulations as well. Our results imply a conserved serotonergic mechanism that context-dependently modulates environmental reactivity and is highly sensitive to experiences acquired during a specific early-life time-window, a phenomenon that was previously only suggested in mammals.Significance statementThe ability to respond to challenges is a fundamental factor in survival. We show that zebrafish that lack appropriate social stimuli in a sensitive developmental period show exacerbated alertness in non-stressful conditions while failing to react adequately to stressors. This shift is reflected inversely by central serotonergic signaling, a system that is implicated in numerous mental disorders in humans. Serotonergic changes in brain regions modulating responsivity and behavioral impairment were both prevented by the pharmacological blockade of serotonergic function. These results imply a serotonergic mechanism in zebrafish that transmits early-life experiences to the later phenotype by shaping stress-dependent behavioral reactivity, a phenomenon that was previously only suggested in mammals. Zebrafish provide new insights into early-life-dependent neuromodulation of behavioral stress-responses.

2018 ◽  
Vol 5 (3) ◽  
pp. 172268 ◽  
Author(s):  
L. Chouinard-Thuly ◽  
A. R. Reddon ◽  
I. Leris ◽  
R. L. Earley ◽  
S. M. Reader

To survive, animals must respond appropriately to stress. Stress responses are costly, so early-life experiences with potential stressors could adaptively tailor adult stress responses to local conditions. However, how multiple stressors influence the development of the stress response remains unclear, as is the role of sex. Trinidadian guppies ( Poecilia reticulata ) are small fish with extensive life-history differences between the sexes and population variation in predation pressure and social density. We investigated how sex and early-life experience influence hormonal stress responses by manipulating conspecific density and perceived predation risk during development. In adults, we sampled cortisol twice to measure initial release and change over time in response to a recurring stressor. The sexes differed considerably in their physiological stress response. Males released more cortisol for their body mass than females and did not reduce cortisol release over time. By contrast, all females, except those reared at high density together with predation cues, reduced cortisol release over time. Cortisol responses of males were thus less dynamic in response to current circumstances and early-life experiences than females, consistent with life-history differences between the sexes. Our study underscores the importance of early-life experiences, interacting ecological factors and sex differences in the organization of the stress response.


2021 ◽  
pp. 002214652110054
Author(s):  
Sarah A. Mustillo ◽  
Miao Li ◽  
Patricia Morton ◽  
Kenneth F. Ferraro

Prior research reveals that negative early-life experiences play a major role in the development of obesity in later life, but few studies identify mechanisms that alter the lifetime risk of obesity. This study examines the influence of negative childhood experiences on body mass index (BMI) and obesity (BMI ≥30) during older adulthood and the psychosocial and behavioral pathways involved. Using a nationally representative sample, we examine the influence of cumulative misfortune as well as five separate domains of misfortune on BMI and obesity. Results show that four of the five domains are associated with BMI and obesity either directly, indirectly, or both. The influence of cumulative misfortune on the outcomes is mediated by three adult factors: socioeconomic status, depressive symptoms, and physical activity. The mediators identified here provide targets for intervention among older adults to help offset the health risks of excess BMI attributable of early-life exposure to misfortune.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Cristian Carmeli ◽  
Zoltán Kutalik ◽  
Pashupati P. Mishra ◽  
Eleonora Porcu ◽  
Cyrille Delpierre ◽  
...  

AbstractIndividuals experiencing socioeconomic disadvantage in childhood have a higher rate of inflammation-related diseases decades later. Little is known about the mechanisms linking early life experiences to the functioning of the immune system in adulthood. To address this, we explore the relationship across social-to-biological layers of early life social exposures on levels of adulthood inflammation and the mediating role of gene regulatory mechanisms, epigenetic and transcriptomic profiling from blood, in 2,329 individuals from two European cohort studies. Consistently across both studies, we find transcriptional activity explains a substantive proportion (78% and 26%) of the estimated effect of early life disadvantaged social exposures on levels of adulthood inflammation. Furthermore, we show that mechanisms other than cis DNA methylation may regulate those transcriptional fingerprints. These results further our understanding of social-to-biological transitions by pinpointing the role of gene regulation that cannot fully be explained by differential cis DNA methylation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bruno Paes Melo ◽  
Isabela Tristan Lourenço-Tessutti ◽  
Otto Teixeira Fraga ◽  
Luanna Bezerra Pinheiro ◽  
Camila Barrozo de Jesus Lins ◽  
...  

AbstractNACs are plant-specific transcription factors involved in controlling plant development, stress responses, and senescence. As senescence-associated genes (SAGs), NACs integrate age- and stress-dependent pathways that converge to programmed cell death (PCD). In Arabidopsis, NAC-SAGs belong to well-characterized regulatory networks, poorly understood in soybean. Here, we interrogated the soybean genome and provided a comprehensive analysis of senescence-associated Glycine max (Gm) NACs. To functionally examine GmNAC-SAGs, we selected GmNAC065, a putative ortholog of Arabidopsis ANAC083/VNI2 SAG, and the cell death-promoting GmNAC085, an ANAC072 SAG putative ortholog, for analyses. Expression analysis of GmNAC065 and GmNAC085 in soybean demonstrated (i) these cell death-promoting GmNACs display contrasting expression changes during age- and stress-induced senescence; (ii) they are co-expressed with functionally different gene sets involved in stress and PCD, and (iii) are differentially induced by PCD inducers. Furthermore, we demonstrated GmNAC065 expression delays senescence in Arabidopsis, a phenotype associated with enhanced oxidative performance under multiple stresses, higher chlorophyll, carotenoid and sugar contents, and lower stress-induced PCD compared to wild-type. In contrast, GmNAC085 accelerated stress-induced senescence, causing enhanced chlorophyll loss, ROS accumulation and cell death, decreased antioxidative system expression and activity. Accordingly, GmNAC065 and GmNAC085 targeted functionally contrasting sets of downstream AtSAGs, further indicating that GmNAC85 and GmNAC065 regulators function inversely in developmental and environmental PCD.


2011 ◽  
Vol 51 (8) ◽  
pp. 935-939 ◽  
Author(s):  
Tamra E. Cater ◽  
Virgil Zeigler-Hill ◽  
Jennifer Vonk
Keyword(s):  

Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1801
Author(s):  
Diederik van Liere ◽  
Nataša Siard ◽  
Pim Martens ◽  
Dušanka Jordan

Transmission of experience about prey and habitat supports the survival of next generation of wolves. Thus, the parent pack (PP) can affect whether young migrating wolves (loners) kill farm animals or choose to be in human environments, which generates human–wolf conflicts. Therefore, we researched whether the behavior of loners resembles PP behavior. After being extinct, 22 loners had entered the Netherlands between 2015 and 2019. Among them, 14 could be DNA-identified and linked with their PPs in Germany. Some loners were siblings. We assessed the behavior of each individual and PP through a structured Google search. PP behavior was determined for the loner’s rearing period. Similarity between loner and PP behavior was significant (p = 0.022) and applied to 10 of 14 cases: like their PPs, three loners killed sheep and were near humans, five killed sheep and did not approach humans, while two loners were unproblematic, they did not kill sheep, nor were they near humans. Siblings behaved similarly. Thus, sheep killing and proximity to humans may develop during early-life experiences in the PP. However, by negative reinforcement that can be prevented. New methods are suggested to achieve that. As a result, new generations may not be problematic when leaving PPs.


Sign in / Sign up

Export Citation Format

Share Document