scholarly journals Human hepatic tryptophan 2,3-dioxygenase ubiquitin-dependent protein degradation: The critical role of its exosite as the molecular lynchpin of its substrate-mediated protein stabilization

2019 ◽  
Author(s):  
Sung-Mi Kim ◽  
Yi Liu ◽  
YongQiang Wang ◽  
Shay Karkashon ◽  
Ariel Lewis-Ballester ◽  
...  

AbstractHepatic tryptophan 2,3-dioxygenase (TDO) is a cytoplasmic homotetrameric hemoprotein and the rate-limiting enzyme in the irreversible degradation of the essential amino acid L-tryptophan (L-Trp) to N-formylkynurenine, thus controlling the flux of L-Trp into its serotonergic and kynureninic/NAD pathways. TDO has long been recognized to be substrate-inducible via protein stabilization, but the molecular mechanism of this stabilization has remained elusive. Recent elucidation of human TDO (hTDO) crystal structure has identified a high-affinity (Kd ≈ 0.5 μM) Trp-binding exosite in each of its 4 monomeric subunits. Mutation of the Glu105, Trp208 and Arg211 comprising this exosite not only abolished the high-affinity L-Trp binding, but also accelerated the ubiquitin-dependent proteasomal degradation of hTDO. We have further characterized this hTDO degradation by documenting that its ubiquitination by gp78/AMFR and CHIP E2/E3 ligase complexes occurs on external Lys-residues within or vicinal to acidic Asp/Glu and phosphorylated pSer/pThr (DEpSpT)-clusters. Furthermore, we have identified the unstructured hTDO N- and C-termini as imparting relatively high proteolytic instability, as their deletion (ΔNC) markedly prolonged hTDO t1/2. Additionally, although previous studies reported that upon hepatic heme-depletion, the heme-free apoTDO turns over with a t1/2 ≈ 2.2 h relative to the t1/2 of 7.7 h of holoTDO, mutating the axial heme-ligating His328 to Ala has the opposite effect of prolonging hTDO t1/2. Most importantly, introducing the exosite mutation into the ΔNC-deleted or H328A-mutant completely abolished their prolonged half-lives irrespective of L-Trp presence or absence, thereby revealing that the exosite is the molecular lynchpin that defines L-Trp-mediated TDO induction via protein stabilization.

2021 ◽  
Vol 11 ◽  
Author(s):  
Zezhong Yang ◽  
Cheng Gong ◽  
Yuan Hu ◽  
Jie Zhong ◽  
Jixing Xia ◽  
...  

Deoxythymidine triphosphate (dTTP) is essential for DNA synthesis and cellular growth in all organisms. Here, genetic capacity analysis of the pyrimidine pathway in insects and their symbionts revealed that dTTP is a kind of metabolic input in several host insect/obligate symbiont symbiosis systems, including Bemisia tabaci MED/Candidatus Portiera aleyrodidarum (hereafter Portiera). As such, the roles of dTTP on both sides of the symbiosis system were investigated in B. tabaci MED/Portiera. Dietary RNA interference (RNAi) showed that suppressing dTTP production significantly reduced the density of Portiera, significantly repressed the expression levels of horizontally transferred essential amino acid (EAA) synthesis-related genes, and significantly decreased the reproduction of B. tabaci MED adults as well as the hatchability of their offspring. Our results revealed the regulatory role of dTTP in B. tabaci MED/Portiera and showed that dTTP synthesis-related genes could be potential targets for controlling B. tabaci as well as other sucking pests.


2019 ◽  
Vol 7 (9) ◽  
pp. 2646-2652 ◽  
Author(s):  
Khak Ho Lim ◽  
Ka Wai Wong ◽  
Yu Liu ◽  
Yu Zhang ◽  
Doris Cadavid ◽  
...  

The introduction of nonmetal nanoinclusions within Ag2Se results in an interphase band bending that promotes electron filtering and increase Seebeck coefficient. Similar loading of metal nanoinclusions provided an opposite effect-modulating free carrier concentration, as characterized by superior electrical conductivities and lower Seebeck coefficients.


2019 ◽  
Vol 1 (3) ◽  
pp. 390-403 ◽  
Author(s):  
Fang Ni ◽  
Wen-Mei Yu ◽  
Zhiguo Li ◽  
Douglas K. Graham ◽  
Lingtao Jin ◽  
...  

2003 ◽  
Vol 23 (19) ◽  
pp. 7044-7054 ◽  
Author(s):  
Antonio Bedalov ◽  
Maki Hirao ◽  
Jeffrey Posakony ◽  
Melisa Nelson ◽  
Julian A. Simon

ABSTRACT Nicotine adenine dinucleotide (NAD+) performs key roles in electron transport reactions, as a substrate for poly(ADP-ribose) polymerase and NAD+-dependent protein deacetylases. In the latter two processes, NAD+ is consumed and converted to ADP-ribose and nicotinamide. NAD+ levels can be maintained by regeneration of NAD+ from nicotinamide via a salvage pathway or by de novo synthesis of NAD+ from tryptophan. Both pathways are conserved from yeast to humans. We describe a critical role of the NAD+-dependent deacetylase Hst1p as a sensor of NAD+ levels and regulator of NAD+ biosynthesis. Using transcript arrays, we show that low NAD+ states specifically induce the de novo NAD+ biosynthesis genes while the genes in the salvage pathway remain unaffected. The NAD+-dependent deacetylase activity of Hst1p represses de novo NAD+ biosynthesis genes in the absence of new protein synthesis, suggesting a direct effect. The known Hst1p binding partner, Sum1p, is present at promoters of highly inducible NAD+ biosynthesis genes. The removal of HST1-mediated repression of the NAD+ de novo biosynthesis pathway leads to increased cellular NAD+ levels. Transcript array analysis shows that reduction in cellular NAD+ levels preferentially affects Hst1p-regulated genes in comparison to genes regulated with other NAD+-dependent deacetylases (Sir2p, Hst2p, Hst3p, and Hst4p). In vitro experiments demonstrate that Hst1p has relatively low affinity toward NAD+ in comparison to other NAD+-dependent enzymes. These findings suggest that Hst1p serves as a cellular NAD+ sensor that monitors and regulates cellular NAD+ levels.


2000 ◽  
Vol 191 (8) ◽  
pp. 1293-1302 ◽  
Author(s):  
Liliane Fossati-Jimack ◽  
Andreea Ioan-Facsinay ◽  
Luc Reininger ◽  
Yves Chicheportiche ◽  
Norihiko Watanabe ◽  
...  

Using three different Fcγ receptor (FcγR)-deficient mouse strains, we examined the induction of autoimmune hemolytic anemia by each of the four immunoglobulin (Ig)G isotype-switch variants of a 4C8 IgM antierythrocyte autoantibody and its relation to the contributions of the two FcγR, FcγRI, and FcγRIII, operative in the phagocytosis of opsonized particles. We found that the four IgG isotypes of this antibody displayed striking differences in pathogenicity, which were related to their respective capacity to interact in vivo with the two phagocytic FcγRs, defined as follows: IgG2a > IgG2b > IgG3/IgG1 for FcγRI, and IgG2a > IgG1 > IgG2b > IgG3 for FcγRIII. Accordingly, the IgG2a autoantibody exhibited the highest pathogenicity, ∼20–100-fold more potent than its IgG1 and IgG2b variants, respectively, while the IgG3 variant, which displays little interaction with these FcγRs, was not pathogenic at all. An unexpected critical role of the low-affinity FcγRIII was revealed by the use of two different IgG2a anti–red blood cell autoantibodies, which displayed a striking preferential utilization of FcγRIII, compared with the high-affinity FcγRI. This demonstration of the respective roles in vivo of four different IgG isotypes, and of two phagocytic FcγRs, in autoimmune hemolytic anemia highlights the major importance of the regulation of IgG isotype responses in autoantibody-mediated pathology and humoral immunity.


2012 ◽  
Vol 5 ◽  
pp. IJTR.S9835 ◽  
Author(s):  
Diba Sheipouri ◽  
Nady Braidy ◽  
Gilles J. Guillemin

The kynurenine pathway (KP) is the principle route of catabolism of the essential amino acid tryptophan, leading to the production of several neuroactive and immunoregulatory metabolites. Alterations in the KP have been implicated in various neuropsychiatric and neurodegenerative diseases, immunological disorders, and many other diseased states. Although the role of the KP in the skin has been evaluated in small niche fields, limited studies are available regarding the effect of acute ultra violet exposure and the induction of the KP in human skin-derived fibroblasts and keratinocytes. Since UV exposure can illicit an inflammatory component in skin cells, it is highly likely that the KP may be induced in these cells in response to UV exposure. It is also possible that some KP metabolites may act as pro-inflammatory and anti-inflammatory mediators, since the KP is important in immunomodulation.


Glycobiology ◽  
2009 ◽  
Vol 19 (12) ◽  
pp. 1473-1484 ◽  
Author(s):  
Tracy K Carlson ◽  
Jordi B Torrelles ◽  
Kelly Smith ◽  
Tim Horlacher ◽  
Riccardo Castelli ◽  
...  

2001 ◽  
Vol 183 (20) ◽  
pp. 5826-5833 ◽  
Author(s):  
Soula Margelis ◽  
Cletus D'Souza ◽  
Anna J. Small ◽  
Michael J. Hynes ◽  
Thomas H. Adams ◽  
...  

ABSTRACT Glutamine synthetase (GS), EC 6.3.1.2 , is a central enzyme in the assimilation of nitrogen and the biosynthesis of glutamine. We have isolated the Aspergillus nidulans glnA gene encoding GS and have shown that glnA encodes a highly expressed but not highly regulated mRNA. Inactivation of glnA results in an absolute glutamine requirement, indicating that GS is responsible for the synthesis of this essential amino acid. Even when supplemented with high levels of glutamine, strains lacking a functionalglnA gene have an inhibited morphology, and a wide range of compounds have been shown to interfere with repair of the glutamine auxotrophy. Heterologous expression of the prokaryotic Anabaena glnA gene from the A. nidulans alcA promoter allowed full complementation of the A. nidulans glnAΔ mutation. However, the A. nidulans fluG gene, which encodes a protein with similarity to prokaryotic GS, did not replace A. nidulans glnA function when similarly expressed. Our studies with theglnAΔ mutant confirm that glutamine, and not GS, is the key effector of nitrogen metabolite repression. Additionally, ammonium and its immediate product glutamate may also act directly to signal nitrogen sufficiency.


Sign in / Sign up

Export Citation Format

Share Document