pyrimidine pathway
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 1)

H-INDEX

13
(FIVE YEARS 0)

2021 ◽  
Vol 11 ◽  
Author(s):  
Zezhong Yang ◽  
Cheng Gong ◽  
Yuan Hu ◽  
Jie Zhong ◽  
Jixing Xia ◽  
...  

Deoxythymidine triphosphate (dTTP) is essential for DNA synthesis and cellular growth in all organisms. Here, genetic capacity analysis of the pyrimidine pathway in insects and their symbionts revealed that dTTP is a kind of metabolic input in several host insect/obligate symbiont symbiosis systems, including Bemisia tabaci MED/Candidatus Portiera aleyrodidarum (hereafter Portiera). As such, the roles of dTTP on both sides of the symbiosis system were investigated in B. tabaci MED/Portiera. Dietary RNA interference (RNAi) showed that suppressing dTTP production significantly reduced the density of Portiera, significantly repressed the expression levels of horizontally transferred essential amino acid (EAA) synthesis-related genes, and significantly decreased the reproduction of B. tabaci MED adults as well as the hatchability of their offspring. Our results revealed the regulatory role of dTTP in B. tabaci MED/Portiera and showed that dTTP synthesis-related genes could be potential targets for controlling B. tabaci as well as other sucking pests.


PLoS ONE ◽  
2013 ◽  
Vol 8 (6) ◽  
pp. e67035 ◽  
Author(s):  
Pere Domingo ◽  
Maria Gracia Mateo ◽  
Alain Pruvost ◽  
Ferran Torres ◽  
Juliana Salazar ◽  
...  

2005 ◽  
Vol 289 (3) ◽  
pp. G388-G396 ◽  
Author(s):  
Mary E. Evans ◽  
Dean P. Jones ◽  
Thomas R. Ziegler

Glutamine (Gln) prevents apoptosis in intestinal epithelial cells, but the mechanism(s) remain unknown. Gln-derived metabolites include ammonia, glutamate (Glu), glutathione (GSH), and nucleotides. We previously showed that Gln potently inhibited apoptosis in cytokine-treated human colonic HT-29 cells; this effect was specific to Gln, unaffected by Glu, and unrelated to intracellular GSH. The current research examines mechanism(s) for Gln-induced antiapoptotic effects in HT-29 cells treated with TNF-α-related apoptosis-inducing ligand (TRAIL). Proliferating cells were treated with Gln or selected Gln metabolites for 24 h. Cells were then treated with TRAIL and Gln or its downstream metabolites, and apoptosis was assessed at 8 h after treatment. The purine and pyrimidine precursors inosine and orotate inhibited TRAIL-induced apoptosis. However, inhibition of purine synthesis with azaserine did not alter the potent antiapoptotic effect of Gln. In contrast, the pyrimidine synthesis inhibitor, acivicin, completely prevented this response. Supplementation with the pyrimidine uracil or the pyrimidine precursor orotate rescued the acivicin-induced blockade of Gln antiapoptotic action. Removal of bicarbonate, a substrate for pyrimidine synthesis, also inhibited the antiapoptotic effects of Gln. Uracil and thymine alone also significantly decreased TRAIL-induced apoptosis. The antiapoptotic effects of Gln were independent of DNA/RNA synthesis as measured by flow cytometry and bromodeoxyuridine incorporation. In conclusion, Gln prevents TRAIL-induced apoptosis in HT-29 cells through a mechanism involving the pyrimidine pathway. Our data also demonstrate the novel antiapoptotic effects of pyrimidine bases and their precursor orotate in these human intestinal cells.


2002 ◽  
Vol 99 (3) ◽  
pp. 328-335 ◽  
Author(s):  
Ritsuto Fujiwaki ◽  
Kohkichi Hata ◽  
Kentaro Nakayama ◽  
Masashi Moriyama ◽  
Osamu Iwanari ◽  
...  

1989 ◽  
Vol 261 (2) ◽  
pp. 523-529 ◽  
Author(s):  
P M Anderson

The first two steps of urea synthesis in liver of marine elasmobranchs involve formation of glutamine from ammonia and of carbamoyl phosphate from glutamine, catalysed by glutamine synthetase and carbamoyl-phosphate synthetase, respectively [Anderson & Casey (1984) J. Biol. Chem. 259, 456-462]; both of these enzymes are localized exclusively in the mitochondrial matrix. The objective of this study was to establish the enzymology of carbamoyl phosphate formation and utilization for pyrimidine nucleotide biosynthesis in Squalus acanthias (spiny dogfish), a representative elasmobranch. Aspartate carbamoyltransferase could not be detected in liver of dogfish. Spleen extracts, however, had glutamine-dependent carbamoyl-phosphate synthetase, aspartate carbamoyltransferase, dihydro-orotase, and glutamine synthetase activities, all localized in the cytosol; dihydro-orotate dehydrogenase, orotate phosphoribosyltransferase, and orotidine-5′-decarboxylase activities were also present. Except for glutamine synthetase, the levels of all activities were very low. The carbamoyl-phosphate synthetase activity is inhibited by UTP and is activated by 5-phosphoribosyl 1-pyrophosphate. The first three enzyme activities of the pyrimidine pathway were eluted in distinctly different positions during gel filtration chromatography under a number of different conditions; although complete proteolysis of inter-domain regions of a multifunctional complex during extraction cannot be excluded, the evidence suggests that in dogfish, in contrast to mammalian species, these three enzymes of the pyrimidine pathway exist as individual polypeptide chains. These results: (1) establish that dogfish express two different glutamine-dependent carbamoyl-phosphate synthetase activities, (2) confirm the report [Smith, Ritter & Campbell (1987) J. Biol. Chem. 262, 198-202] that dogfish express two different glutamine synthetases, and (3) provide indirect evidence that glutamine may not be available in liver for biosynthetic reactions other than urea formation.


Sign in / Sign up

Export Citation Format

Share Document