scholarly journals Allosteric communications between domains modulate the activity of matrix metalloprotease-1

2019 ◽  
Author(s):  
Lokender Kumar ◽  
Anthony Nash ◽  
Chase Harms ◽  
Joan Planas-Iglesias ◽  
Derek Wright ◽  
...  

ABSTRACTAn understanding of the structure-dynamics relationship is essential for understanding how a protein works. Prior research has shown that the activity of a protein correlates with intra-domain dynamics occurring at picosecond to millisecond timescales. However, the correlation between inter-domain dynamics and the function of a protein is poorly understood. Here we show that communications between the catalytic and hemopexin domains of matrix metalloprotease-1 (MMP1) on type-1 collagen fibrils correlate with its activity. Using single-molecule FRET (smFRET), we identified functionally relevant open conformations where the two MMP1 domains are well-separated, which were significantly absent for catalytically inactive point mutant (E219Q) of MMP1 and could be modulated by an inhibitor or an enhancer of activity. The observed relevance of open conformations resolves the debate about the roles of open and closed MMP1 structures in function. A sum of two Gaussians fitted histograms, whereas an exponential fitted autocorrelations of smFRET values. We used a two-state Poisson process to describe the dynamics and used histograms and autocorrelations of conformations to calculate the kinetic rates between the two states. All-atom and coarse-grained simulations reproduced some of the experimental features and revealed substrate-dependent MMP1 dynamics. Our results suggest that an inter-domain separation facilitates opening up the catalytic pocket so that the collagen chains come closer to the MMP1 active site. Coordination of functional conformations at different parts of MMP1 occurs via allosteric communications that can take place via interactions mediated by collagen even if the linker between the domains is absent. Modeling dynamics as a Poisson process enables connecting the picosecond timescales of molecular dynamics simulations with the millisecond timescales of single molecule measurements. Water-soluble MMP1 interacting with water-insoluble collagen fibrils poses challenges for biochemical studies that the single molecule tracking can overcome for other insoluble substrates. Inter-domain communications are likely important for multidomain proteins.Statement of SignificanceIt is often challenging to distinguish functionally important dynamics because proteins are inherently flexible. MMP1 is a model enzyme because both the catalytic and hemopexin domains are necessary to degrade triple-helical type-1 collagen, the highly proteolysis-resistant structural component of the extracellular matrix. We report, for the first time, measurements of MMP1 inter-domain dynamics on type-1 collagen fibrils. We have identified functionally relevant MMP1 conformations where the two domains are far apart. Mutations and ligands can allosterically modulate the dynamics that correlate with activity. The dynamics follow a two-state Poisson process that connects the picosecond timescales of MD simulations with the millisecond timescales of experiments. The two domains can functionally communicate via collagen even when the physical linker is absent.

2019 ◽  
Author(s):  
Lokender Kumar ◽  
Joan Planas-Iglesias ◽  
Chase Harms ◽  
Sumaer Kamboj ◽  
Derek Wright ◽  
...  

AbstractThe roles of protein conformational dynamics and allostery in function are well-known. However, the roles that inter-domain dynamics have in function are not entirely understood. We used matrix metalloprotease-1 (MMP1) as a model system to study the relationship between inter-domain dynamics and activity because MMP1 has diverse substrates. Here we focus on fibrin, the primary component of a blood clot. Water-soluble fibrinogen, following cleavage by thrombin, self-polymerize to form water-insoluble fibrin. We studied the inter-domain dynamics of MMP1 on fibrin without crosslinks using single-molecule Forster Resonance Energy Transfer (smFRET). We observed that the distance between the catalytic and hemopexin domains of MMP1 increases or decreases as the MMP1 activity increases or decreases, respectively. We modulated the activity using 1) an active site mutant (E219Q) of MMP1, 2) MMP9, another member of the MMP family that increases the activity of MMP1, and 3) tetracycline, an inhibitor of MMP1. We fitted the histograms of smFRET values to a sum of two Gaussians and the autocorrelations to an exponential and power law. We modeled the dynamics as a two-state Poisson process and calculated the kinetic rates from the histograms and autocorrelations. Activity-dependent inter-domain dynamics may enable allosteric control of the MMP1 function.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Lokender Kumar ◽  
Joan Planas-Iglesias ◽  
Chase Harms ◽  
Sumaer Kamboj ◽  
Derek Wright ◽  
...  

AbstractThe roles of protein conformational dynamics and allostery in function are well-known. However, the roles that interdomain dynamics have in function are not entirely understood. We used matrix metalloprotease-1 (MMP1) as a model system to study the relationship between interdomain dynamics and activity because MMP1 has diverse substrates. Here we focus on fibrin, the primary component of a blood clot. Water-soluble fibrinogen, following cleavage by thrombin, self-polymerize to form water-insoluble fibrin. We studied the interdomain dynamics of MMP1 on fibrin without crosslinks using single-molecule Forster Resonance Energy Transfer (smFRET). We observed that the distance between the catalytic and hemopexin domains of MMP1 increases or decreases as the MMP1 activity increases or decreases, respectively. We modulated the activity using (1) an active site mutant (E219Q) of MMP1, (2) MMP9, another member of the MMP family that increases the activity of MMP1, and (3) tetracycline, an inhibitor of MMP1. We fitted the histograms of smFRET values to a sum of two Gaussians and the autocorrelations to an exponential and power law. We modeled the dynamics as a two-state Poisson process and calculated the kinetic rates from the histograms and autocorrelations. Activity-dependent interdomain dynamics may enable allosteric control of the MMP1 function.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 502
Author(s):  
Karel Šindelka ◽  
Zuzana Limpouchová ◽  
Karel Procházka

Using coarse-grained dissipative particle dynamics (DPD) with explicit electrostatics, we performed (i) an extensive series of simulations of the electrostatic co-assembly of asymmetric oppositely charged copolymers composed of one (either positively or negatively charged) polyelectrolyte (PE) block A and one water-soluble block B and (ii) studied the solubilization of positively charged porphyrin derivatives (P+) in the interpolyelectrolyte complex (IPEC) cores of co-assembled nanoparticles. We studied the stoichiometric mixtures of 137 A10+B25 and 137 A10−B25 chains with moderately hydrophobic A blocks (DPD interaction parameter aAS=35) and hydrophilic B blocks (aBS=25) with 10 to 120 P+ added (aPS=39). The P+ interactions with other components were set to match literature information on their limited solubility and aggregation behavior. The study shows that the moderately soluble P+ molecules easily solubilize in IPEC cores, where they partly replace PE+ and electrostatically crosslink PE− blocks. As the large P+ rings are apt to aggregate, P+ molecules aggregate in IPEC cores. The aggregation, which starts at very low loadings, is promoted by increasing the number of P+ in the mixture. The positively charged copolymers repelled from the central part of IPEC core partially concentrate at the core-shell interface and partially escape into bulk solvent depending on the amount of P+ in the mixture and on their association number, AS. If AS is lower than the ensemble average ⟨AS⟩n, the copolymer chains released from IPEC preferentially concentrate at the core-shell interface, thus increasing AS, which approaches ⟨AS⟩n. If AS>⟨AS⟩n, they escape into the bulk solvent.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3293
Author(s):  
Mateusz Zalewski ◽  
Sebastian Kmiecik ◽  
Michał Koliński

One of the major challenges in the computational prediction of protein–peptide complexes is the scoring of predicted models. Usually, it is very difficult to find the most accurate solutions out of the vast number of sometimes very different and potentially plausible predictions. In this work, we tested the protocol for Molecular Dynamics (MD)-based scoring of protein–peptide complex models obtained from coarse-grained (CG) docking simulations. In the first step of the scoring procedure, all models generated by CABS-dock were reconstructed starting from their original C-alpha trace representations to all-atom (AA) structures. The second step included geometry optimization of the reconstructed complexes followed by model scoring based on receptor–ligand interaction energy estimated from short MD simulations in explicit water. We used two well-known AA MD force fields, CHARMM and AMBER, and a CG MARTINI force field. Scoring results for 66 different protein–peptide complexes show that the proposed MD-based scoring approach can be used to identify protein–peptide models of high accuracy. The results also indicate that the scoring accuracy may be significantly affected by the quality of the reconstructed protein receptor structures.


2005 ◽  
Vol 79 (23) ◽  
pp. 14748-14755 ◽  
Author(s):  
Melissa I. Chang ◽  
Porntula Panorchan ◽  
Terrence M. Dobrowsky ◽  
Yiider Tseng ◽  
Denis Wirtz

ABSTRACT A quantitative description of the binding interactions between human immunodeficiency virus (HIV) type 1 envelope glycoproteins and their host cell surface receptors remains incomplete. Here, we introduce a single-molecule analysis that directly probes the binding interactions between an individual viral subunit gp120 and a single receptor CD4 and/or chemokine coreceptor CCR5 in living cells. This analysis differentiates single-molecule binding from multimolecule avidity and shows that, while the presence of CD4 is required for gp120 binding to CCR5, the force required to rupture a single gp120-coreceptor bond is significantly higher and its lifetime is much longer than those of a single gp120-receptor bond. The lifetimes of these bonds are themselves shorter than those of the P-selectin/PSGL-1 bond involved in leukocyte attachment to the endothelium bonds during an inflammation response. These results suggest an amended model of HIV entry in which, immediately after the association of gp120 to its receptor, gp120 seeks its coreceptor to rapidly form a new bond. This “bond transfer” occurs only if CCR5 is in close proximity to CD4 and CD4 is still attached to gp120. The analysis presented here may serve as a general framework to study mechanisms of receptor-mediated interactions between viral envelope proteins and host cell receptors at the single-molecule level in living cells.


FEBS Journal ◽  
2013 ◽  
Vol 280 (24) ◽  
pp. 6541-6555 ◽  
Author(s):  
Anna Niarakis ◽  
Eleftheria Giannopoulou ◽  
Panagiota Ravazoula ◽  
Elias Panagiotopoulos ◽  
Ioannis K. Zarkadis ◽  
...  

Life ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 110 ◽  
Author(s):  
Davide Sala ◽  
Ugo Cosentino ◽  
Anna Ranaudo ◽  
Claudio Greco ◽  
Giorgio Moro

Intrinsically Disordered Peptides and Proteins (IDPs) in solution can span a broad range of conformations that often are hard to characterize by both experimental and computational methods. However, obtaining a significant representation of the conformational space is important to understand mechanisms underlying protein functions such as partner recognition. In this work, we investigated the behavior of the Sic1 Kinase-Inhibitor Domain (KID) in solution by Molecular Dynamics (MD) simulations. Our results point out that application of common descriptors of molecular shape such as Solvent Accessible Surface (SAS) area can lead to misleading outcomes. Instead, more appropriate molecular descriptors can be used to define 3D structures. In particular, we exploited Weighted Holistic Invariant Molecular (WHIM) descriptors to get a coarse-grained but accurate definition of the variegated Sic1 KID conformational ensemble. We found that Sic1 is able to form a variable amount of folded structures even in absence of partners. Among them, there were some conformations very close to the structure that Sic1 is supposed to assume in the binding with its physiological complexes. Therefore, our results support the hypothesis that this protein relies on the conformational selection mechanism to recognize the correct molecular partners.


2021 ◽  
Author(s):  
Aujan Mehregan ◽  
Sergio Perez-Conesa ◽  
Yuxuan Zhuang ◽  
Ahmad Elbahnsi ◽  
Diletta Pasini ◽  
...  

SARS-CoV-2 is the virus responsible for the COVID-19 pandemic which continues to wreak havoc across the world, over a year and a half after its effects were first reported in the general media. Current fundamental research efforts largely focus on the SARS-CoV-2 Spike protein. Since successful antiviral therapies are likely to target multiple viral components, there is considerable interest in understanding the biophysical role of its other proteins, in particular structural membrane proteins. Here, we have focused our efforts on the characterization of the full-length E protein from SARS-CoV-2, combining experimental and computational approaches. Recombinant expression of the full-length E protein from SARS-CoV-2 reveals that this membrane protein is capable of independent multimerization, possibly as a tetrameric or smaller species. Fluorescence microscopy shows that the protein localizes intracellularly, and coarse-grained MD simulations indicate it causes bending of the surrounding lipid bilayer, corroborating a potential role for the E protein in viral budding. Although we did not find robust electrophysiological evidence of ion-channel activity, cells transfected with the E protein exhibited reduced intracellular Ca2+, which may further promote viral replication. However, our atomistic MD simulations revealed that previous NMR structures are relatively unstable, and result in models incapable of ion conduction. Our study highlights the importance of using high-resolution structural data obtained from a full-length protein to gain detailed molecular insights, and eventually permitting virtual drug screening.


2021 ◽  
Vol 7 ◽  
Author(s):  
Amy O. Stevens ◽  
Yi He

PICK1 is a multi-domain scaffolding protein that is uniquely comprised of both a PDZ domain and a BAR domain. While previous experiments have shown that the PDZ domain and the linker positively regulate the BAR domain and the C-terminus negatively regulates the BAR domain, the details of internal regulation mechanisms are unknown. Molecular dynamics (MD) simulations have been proven to be a useful tool in revealing the intramolecular interactions at atomic-level resolution. PICK1 performs its biological functions in a dimeric form which is extremely computationally demanding to simulate with an all-atom force field. Here, we use coarse-grained MD simulations to expose the key residues and driving forces in the internal regulations of PICK1. While the PDZ and BAR domains do not form a stable complex, our simulations show the PDZ domain preferentially interacting with the concave surface of the BAR domain over other BAR domain regions. Furthermore, our simulations show that the short helix in the linker region can form interactions with the PDZ domain. Our results reveal that the surface of the βB-βC loop, βC strand, and αA-βD loop of the PDZ domain can form a group of hydrophobic interactions surrounding the linker helix. These interactions are driven by hydrophobic forces. In contrast, our simulations reveal a very dynamic C-terminus that most often resides on the convex surface of the BAR domain rather than the previously suspected concave surface. These interactions are driven by a combination of electrostatic and hydrophobic interactions.


2018 ◽  
Author(s):  
Aneesh Chandran ◽  
Xavier Chee ◽  
David L. Prole ◽  
Taufiq Rahman

Inositol 1, 4, 5-trisphosphate (IP3) binding at the N-terminus (NT) of IP3 receptor (IP3R) allosterically triggers the opening of a Ca2+-conducting pore located ~ 100 Å away from the IP3-binding core (IBC). However, the precise mechanism of IP3 binding and correlated domain dynamics in the NT that are central to the IP3R activation, remains unknown. Our all-atom molecular dynamics (MD) simulations recapitulate the characteristic twist motion of the suppresser domain (SD) and reveal correlated ‘clam closure’ dynamics of IBC with IP3-binding, complementing existing suggestions on IP3R activation mechanism. Our study further reveals the existence of inter-domain dynamic correlation in the NT and establishes the SD to be critical for the conformational dynamics of IBC. Also, a tripartite interaction involving Glu283-Arg54-Asp444 at the SD – IBC interface seemed critical for IP3R activation. Intriguingly, during the sub-microsecond long simulation, we observed Arg269 undergoing an SD-dependent flipping of hydrogen bonding between the first and fifth phosphate groups of IP3. This seems to play a major role in determining the IP3 binding affinity of IBC in the presence/absence of the SD. Our study thus provides atomistic details of early molecular events occurring within the NT during and following IP3 binding that lead to channel gating.


Sign in / Sign up

Export Citation Format

Share Document