scholarly journals Spondweni virus causes fetal harm in a mouse model of vertical transmission and is transmitted by Aedes aegypti mosquitoes

2019 ◽  
Author(s):  
Anna S. Jaeger ◽  
Andrea M. Weiler ◽  
Ryan V. Moriarty ◽  
Sierra Rybarczyk ◽  
Shelby L. O’Connor ◽  
...  

AbstractSpondweni virus (SPONV) is the most closely related known flavivirus to Zika virus (ZIKV). Its pathogenic potential and vector specificity have not been well defined. SPONV has been found predominantly in Africa, but was recently detected in a pool of Culex quinquefasciatus mosquitoes in Haiti. Here we show that SPONV can cause significant fetal harm, including demise, comparable to ZIKV, in a mouse model of vertical transmission. Following maternal inoculation, we detected infectious SPONV in placentas and fetuses, along with significant fetal and placental histopathology, together indicating vertical transmission. To test vector competence, we exposed Aedes aegypti and Culex quinquefasciatus mosquitoes to SPONV-infected bloodmeals. Aedes aegypti could efficiently transmit SPONV, whereas Culex quinquefasciatus could not. Our results suggest that SPONV has the same features that made ZIKV a public health risk.

F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 2546 ◽  
Author(s):  
Walter S. Leal

After a 40-year hiatus, the International Congress of Entomology (ICE 2016) convened in Orlando, Florida (September 25-30, 2016). One of the symposia at ICE 2016, the Zika Symposium, covered multiple aspects of the Zika epidemic, including epidemiology, sexual transmission, genetic tools for reducing transmission, and particularly vector competence. While there was a consensus among participants that the yellow fever mosquito, Aedes aegypti, is a vector of the Zika virus, there is growing evidence indicating that the range of mosquito vectors might be wider than anticipated. In particular, three independent groups from Canada, China, and Brazil presented and discussed laboratory and field data strongly suggesting that the southern house mosquito, Culex quinquefasciatus, also known as the common mosquito, is highly likely to be a vector in certain environments.


F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 2546 ◽  
Author(s):  
Walter S. Leal

After a 40-year hiatus, the International Congress of Entomology (ICE 2016) convened in Orlando, Florida (September 25-30, 2016). One of the symposia at ICE 2016, the Zika Symposium, covered multiple aspects of the Zika epidemic, including epidemiology, sexual transmission, genetic tools for reducing transmission, and particularly vector competence. While there was a consensus among participants that the yellow fever mosquito, Aedes aegypti, is a vector of the Zika virus, there is growing evidence indicating that the range of mosquito vectors might be wider than anticipated. In particular, three independent groups from Canada, China, and Brazil presented and discussed laboratory and field data strongly suggesting that the southern house mosquito, Culex quinquefasciatus, also known as the common mosquito, is highly likely to be a vector in certain environments.


Pathogens ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 575 ◽  
Author(s):  
Rosilainy S. Fernandes ◽  
Olivia O’Connor ◽  
Maria Ignez L. Bersot ◽  
Dominique Girault ◽  
Marguerite R. Dokunengo ◽  
...  

Zika virus (ZIKV) has caused severe epidemics in South America beginning in 2015, following its spread through the Pacific. We comparatively assessed the vector competence of ten populations of Aedes aegypti and Ae. albopictus from Brazil and two of Ae. aegypti and one of Culex quinquefasciatus from New Caledonia to transmit three ZIKV isolates belonging to African, Asian and American lineages. Recently colonized mosquitoes from eight distinct sites from both countries were orally challenged with the same viral load (107 TCID50/mL) and examined after 7, 14 and 21 days. Cx. quinquefasciatus was refractory to infection with all virus strains. In contrast, although competence varied with geographical origin, Brazilian and New Caledonian Ae. aegypti could transmit the three ZIKV lineages, with a strong advantage for the African lineage (the only one reaching saliva one-week after challenge). Brazilian Ae. albopictus populations were less competent than Ae. aegypti populations. Ae. albopictus generally exhibited almost no transmission for Asian and American lineages, but was efficient in transmitting the African ZIKV. Viral surveillance and mosquito control measures must be strengthened to avoid the spread of new ZIKV lineages and minimize the transmission of viruses currently circulating.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Atchara Phumee ◽  
Jakkrawarn Chompoosri ◽  
Proawpilart Intayot ◽  
Rungfar Boonserm ◽  
Siwaporn Boonyasuppayakorn ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Darwin Elizondo-Quiroga ◽  
Miriam Ramírez-Medina ◽  
Abel Gutiérrez-Ortega ◽  
Armando Elizondo-Quiroga ◽  
José Esteban Muñoz-Medina ◽  
...  

AbstractZika virus (ZIKV) is a mosquito-borne pathogen discovered in the late 40’s in Uganda during a surveillance program for yellow fever. By 2014 the virus reached Eastern Island in the Americas, and two years later, the virus spread to almost all countries and territories of the Americas. The mosquito Aedes aegypti has been identified as the main vector of the disease, and several researchers have also studied the vector competence of Culex quinquefasciatus in virus transmission. The aim of the present study was to evaluate the vector competence of Ae. aegypti and Cx. quinquefasciatus in order to understand their roles in the transmission of ZIKV in Guadalajara, Jalisco, Mexico. In blood feeding laboratry experiments, we found that Ae. aegypti mosquitoes showed to be a competent vector able to transmit ZIKV in this area. On the other hand, we found that F0 Cx. quinquefasciatus mosquitoes are refractory to ZIKV infection, dissemination and transmission.


2018 ◽  
Vol 12 (6) ◽  
pp. e0006524 ◽  
Author(s):  
Bradley J. Main ◽  
Jay Nicholson ◽  
Olivia C. Winokur ◽  
Cody Steiner ◽  
Kasen K. Riemersma ◽  
...  

2017 ◽  
Vol 6 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Chun-xiao Li ◽  
Xiao-xia Guo ◽  
Yong-qiang Deng ◽  
Dan Xing ◽  
Ai-juan Sun ◽  
...  

2018 ◽  
Vol 147 ◽  
Author(s):  
Alberto J. Alaniz ◽  
Mario A. Carvajal ◽  
Antonella Bacigalupo ◽  
Pedro E. Cattan

AbstractZika virus (ZIKV) is an arbovirus transmitted mainly by Aedes aegypti mosquitoes. Recent scientific evidence on Culex quinquefasciatus has suggested its potential as a vector for ZIKV, which may change the current risk zones. We aimed to quantify the world population potentially exposed to ZIKV in a spatially explicit way, considering the primary vector (A. aegypti) and the potential vector (C. quinquefasciatus). Our model combined species distribution modelling of mosquito species with spatially explicit human population data to estimate ZIKV exposure risk. We estimated the potential global distribution of C. quinquefasciatus and estimated its potential interaction zones with A. aegypti. Then we evaluated the risk zones for ZIKV considering both vectors. Finally, we quantified and compared the people under risk associated with each vector by risk level, country and continent. We found that C. quinquefasciatus had a more temperate distribution until 42° in both hemispheres, while the risk involving A. aegypti is concentrated mainly in tropical latitudes until 35° in both hemispheres. Globally, 4.2 billion people are under risk associated with ZIKV. Around 2.6 billon people are under very high risk associated with C. quinquefasciatus and 1 billion people associated with A. aegypti. Several countries could be exposed to ZIKV, which emphasises the need to clarify the competence of C. quinquefasciatus as a potential vector as soon as possible. The models presented here represent a tool for risk management, public health planning, mosquito control and preventive actions, especially to focus efforts on the most affected areas.


Insects ◽  
2018 ◽  
Vol 9 (4) ◽  
pp. 177 ◽  
Author(s):  
Tereza Magalhaes ◽  
Alexis Robison ◽  
Michael Young ◽  
William Black ◽  
Brian Foy ◽  
...  

In urban settings, chikungunya, Zika, and dengue viruses are transmitted by Aedes aegypti mosquitoes. Since these viruses co-circulate in several regions, coinfection in humans and vectors may occur, and human coinfections have been frequently reported. Yet, little is known about the molecular aspects of virus interactions within hosts and how they contribute to arbovirus transmission dynamics. We have previously shown that Aedes aegypti exposed to chikungunya and Zika viruses in the same blood meal can become coinfected and transmit both viruses simultaneously. However, mosquitoes may also become coinfected by multiple, sequential feeds on single infected hosts. Therefore, we tested whether sequential infection with chikungunya and Zika viruses impacts mosquito vector competence. We exposed Ae. aegypti mosquitoes first to one virus and 7 days later to the other virus and compared infection, dissemination, and transmission rates between sequentially and single infected groups. We found that coinfection rates were high after sequential exposure and that mosquitoes were able to co-transmit both viruses. Surprisingly, chikungunya virus coinfection enhanced Zika virus transmission 7 days after the second blood meal. Our data demonstrate heterologous arbovirus synergism within mosquitoes, by unknown mechanisms, leading to enhancement of transmission under certain conditions.


2016 ◽  
Vol 10 (9) ◽  
pp. e0005024 ◽  
Author(s):  
Vaea Richard ◽  
Tuterarii Paoaafaite ◽  
Van-Mai Cao-Lormeau

Sign in / Sign up

Export Citation Format

Share Document