scholarly journals Methplotlib: analysis of modified nucleotides from nanopore sequencing

2019 ◽  
Author(s):  
Wouter De Coster ◽  
Mojca Strazisar

AbstractSummaryModified nucleotides play a crucial role in gene expression regulation. Here we describe methplotlib, a tool developed for the visualization of modified nucleotides detected from Oxford Nanopore Technologies sequencing platforms, together with additional scripts for statistical analysis of allele specific modification within subjects and differential modification frequency across subjects.Availability and implementationThe methplotlib command-line tool is written in Python3, is compatible with Linux, Mac OS and the MS Windows 10 Subsystem for Linux and released under the MIT license. The source code can be found at https://github.com/wdecoster/methplotlib and can be installed from PyPI and bioconda. Our repository includes test data and the tool is continuously tested at [email protected]

2020 ◽  
Vol 36 (10) ◽  
pp. 3236-3238 ◽  
Author(s):  
Wouter De Coster ◽  
Endre Bakken Stovner ◽  
Mojca Strazisar

Abstract Summary Modified nucleotides play a crucial role in gene expression regulation. Here, we describe methplotlib, a tool developed for the visualization of modified nucleotides detected from Oxford Nanopore Technologies sequencing platforms, together with additional scripts for statistical analysis of allele-specific modification within-subjects and differential modification frequency across subjects. Availability and implementation The methplotlib command-line tool is written in Python3, is compatible with Linux, Mac OS and the MS Windows 10 Subsystem for Linux and released under the MIT license. The source code can be found at https://github.com/wdecoster/methplotlib and can be installed from PyPI and bioconda. Our repository includes test data, and the tool is continuously tested at travis-ci.com. Supplementary information Supplementary data are available at Bioinformatics online.


2021 ◽  
Author(s):  
Courtney L. Hall ◽  
Rupesh K. Kesharwani ◽  
Nicole R. Phillips ◽  
John V. Planz ◽  
Fritz J. Sedlazeck ◽  
...  

The high variability characteristic of short tandem repeat (STR) markers is harnessed for human identification in forensic genetic analyses. Despite the power and reliability of current typing techniques, sequence-level information both within and around STRs are masked in the length-based profiles generated. Forensic STR typing using next generation sequencing (NGS) has therefore gained attention as an alternative to traditional capillary electrophoresis (CE) approaches. In this proof-of-principle study, we evaluate the forensic applicability of the newest and smallest NGS platform available — the Oxford Nanopore Technologies (ONT) MinION device. Although nanopore sequencing on the handheld MinION offers numerous advantages, including on-site sample processing, the relatively high error rate and lack of forensic-specific analysis software has prevented accurate profiling across STR panels in previous studies. Here we present STRspy, a streamlined method capable of producing length- and sequence-based STR allele designations from noisy, long-read data. To demonstrate the capabilities of STRspy, seven reference samples (female: n = 2; male: n = 5) were amplified at 15 and 30 PCR cycles using the Promega PowerSeq 46GY System and sequenced on the ONT MinION device in triplicate. Basecalled reads were processed with STRspy using a custom database containing alleles reported in the STRSeq BioProject NIST 1036 dataset. Resultant STR allele designations and flanking region single nucleotide polymorphism (SNP) calls were compared to the manufacturer-validated genotypes for each sample. STRspy generated robust and reliable genotypes across all autosomal STR loci amplified with 30 PCR cycles, achieving 100% concordance based on both length and sequence. Furthermore, we were able to identify flanking region SNPs with >90% accuracy. These results demonstrate that nanopore sequencing platforms are capable of revealing additional variation in and around STR loci depending on read coverage. As the first long-read platform-specific method to successfully profile the entire panel of autosomal STRs amplified by a commercially available multiplex, STRspy significantly increases the feasibility of nanopore sequencing in forensic applications.


Author(s):  
Yunfan Fan ◽  
Andrew N Gale ◽  
Anna Bailey ◽  
Kali Barnes ◽  
Kiersten Colotti ◽  
...  

Abstract We present a highly contiguous genome and transcriptome of the pathogenic yeast, Candida nivariensis. We sequenced both the DNA and RNA of this species using both the Oxford Nanopore Technologies (ONT) and Illumina platforms. We assembled the genome into an 11.8 Mb draft composed of 16 contigs with an N50 of 886 Kb, including a circular mitochondrial sequence of 28 Kb. Using direct RNA nanopore sequencing and Illumina cDNA sequencing, we constructed an annotation of our new assembly, supplemented by lifting over genes from Saccharomyces cerevisiae and Candida glabrata.


Genes ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 381 ◽  
Author(s):  
Olivier Tytgat ◽  
Yannick Gansemans ◽  
Jana Weymaere ◽  
Kaat Rubben ◽  
Dieter Deforce ◽  
...  

Nanopore sequencing for forensic short tandem repeats (STR) genotyping comes with the advantages associated with massively parallel sequencing (MPS) without the need for a high up-front device cost, but genotyping is inaccurate, partially due to the occurrence of homopolymers in STR loci. The goal of this study was to apply the latest progress in nanopore sequencing by Oxford Nanopore Technologies in the field of STR genotyping. The experiments were performed using the state of the art R9.4 flow cell and the most recent R10 flow cell, which was specifically designed to improve consensus accuracy of homopolymers. Two single-contributor samples and one mixture sample were genotyped using Illumina sequencing, Nanopore R9.4 sequencing, and Nanopore R10 sequencing. The accuracy of genotyping was comparable for both types of flow cells, although the R10 flow cell provided improved data quality for loci characterized by the presence of homopolymers. We identify locus-dependent characteristics hindering accurate STR genotyping, providing insights for the design of a panel of STR loci suited for nanopore sequencing. Repeat number, the number of different reference alleles for the locus, repeat pattern complexity, flanking region complexity, and the presence of homopolymers are identified as unfavorable locus characteristics. For single-contributor samples and for a limited set of the commonly used STR loci, nanopore sequencing could be applied. However, the technology is not mature enough yet for implementation in routine forensic workflows.


2021 ◽  
Vol 10 (27) ◽  
Author(s):  
Kristian Jensen ◽  
Kosai Al-Nakeeb ◽  
Anna Koza ◽  
Ahmad A. Zeidan

The genome of Bifidobacterium animalis subsp. lactis BB-12 was sequenced using Oxford Nanopore Technologies long-read and Illumina short-read sequencing platforms. A hybrid genome assembly approach was used to construct an updated complete genome sequence for BB-12 containing 1,944,152 bp, with a G+C content of 60.5% and 1,615 genes.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1847-1847 ◽  
Author(s):  
Adam Burns ◽  
David Robert Bruce ◽  
Pauline Robbe ◽  
Adele Timbs ◽  
Basile Stamatopoulos ◽  
...  

Abstract Introduction Chronic Lymphocytic Leukaemia (CLL) is the most prevalent leukaemia in the Western world and characterised by clinical heterogeneity. IgHV mutation status, mutations in the TP53 gene and deletions of the p-arm of chromosome 17 are currently used to predict an individual patient's response to therapy and give an indication as to their long-term prognosis. Current clinical guidelines recommend screening patients prior to initial, and any subsequent, treatment. Routine clinical laboratory practices for CLL involve three separate assays, each of which are time-consuming and require significant investment in equipment. Nanopore sequencing offers a rapid, low-cost alternative, generating a full prognostic dataset on a single platform. In addition, Nanopore sequencing also promises low failure rates on degraded material such as FFPE and excellent detection of structural variants due to long read length of sequencing. Importantly, Nanopore technology does not require expensive equipment, is low-maintenance and ideal for patient-near testing, making it an attractive DNA sequencing device for low-to-middle-income countries. Methods Eleven untreated CLL samples were selected for the analysis, harbouring both mutated (n=5) and unmutated (n=6) IgHV genes, seven TP53 mutations (five missense, one stop gain and one frameshift) and two del(17p) events. Primers were designed to amplify all exons of TP53, along with the IgHV locus, and each primer included universal tails for individual sample barcoding. The resulting PCR amplicons were prepared for sequencing using a ligation sequencing kit (SQK-LSK108, Oxford Nanopore Technologies, Oxford, UK). All IgHV libraries were pooled and sequenced on one R9.4 flowcell, with the TP53 libraries pooled and sequenced on a second R9.4 flowcell. Whole genome libraries were prepared from 400ng genomic DNA for each sample using a rapid sequencing kit (SQK-RAD004, Oxford Nanopore Technologies, Oxford, UK), and each sample sequenced on individual flowcells on a MinION mk1b instrument (Oxford Nanopore Technologies, Oxford, UK). We developed a bespoke bioinformatics pipeline to detect copy-number changes, TP53 mutations and IgHV mutation status from the Nanopore sequencing data. Results were compared to short-read sequencing data obtained earlier by targeted deep sequencing (MiSeq, Illumina Inc, San Diego, CA, USA) and whole genome sequencing (HiSeq 2500, Illumina Inc, San Diego CA, USA). Results Following basecalling and adaptor trimming, the raw data were submitted to the IMGT database. In the absence of error correction, it was possible to identify the correct VH family for each sample; however the germline homology was not sufficient to differentiate between IgHVmut and IgHVunmut CLL cases. Following bio-informatic error correction and consensus building, the percentage to germline homology was the same as that obtained from short-read sequencing and nanopore sequencing also called the same productive rearrangements in all cases. A total of 77 TP53 variants were identified, including 68 in non-coding regions, and three synonymous SNVs. The remaining 6 were predicted to be functional variants (eight missense and two stop-gains) and had all been identified in early MiSeq targeted sequencing. However, the frameshift mutation was not called by the analysis pipeline, although it is present in the aligned reads. Using the low-coverage WGS data, we were able to identify del(17p) events, of 19Mb and 20Mb length, in both patients with high confidence. Conclusions Here we demonstrate that characterization of the IgHV locus in CLL cases is possible using the MinION platform, provided sufficient downstream analysis, including error correction, is applied. Furthermore, somatic SNVs in TP53 can be identified, although similar to second generation sequencing, variant calling of small insertions and deletions is more problematic. Identification of del(17p) is possible from low-coverage WGS on the MinION and is inexpensive. Our data demonstrates that Nanopore sequencing can be a viable, patient-near, low-cost alternative to established screening methods, with the potential of diagnostic implementation in resource-poor regions of the world. Disclosures Schuh: Giles, Roche, Janssen, AbbVie: Honoraria.


2021 ◽  
Vol 10 (39) ◽  
Author(s):  
Ana B. García-Martín ◽  
Sarah Schmitt ◽  
Friederike Zeeh ◽  
Vincent Perreten

The complete genomes of four Brachyspira hyodysenteriae isolates of the four different sequence types (STs) (ST6, ST66, ST196, and ST197) causing swine dysentery in Switzerland were generated by whole-genome sequencing and de novo hybrid assembly of reads obtained from second (Illumina) and third (Oxford Nanopore Technologies and Pacific Biosciences) high-throughput sequencing platforms.


2021 ◽  
Vol 7 (8) ◽  
Author(s):  
Ryan R. Wick ◽  
Louise M. Judd ◽  
Kelly L. Wyres ◽  
Kathryn E. Holt

Oxford Nanopore Technologies (ONT) sequencing platforms currently offer two approaches to whole-genome native-DNA library preparation: ligation and rapid. In this study, we compared these two approaches for bacterial whole-genome sequencing, with a specific aim of assessing their ability to recover small plasmid sequences. To do so, we sequenced DNA from seven plasmid-rich bacterial isolates in three different ways: ONT ligation, ONT rapid and Illumina. Using the Illumina read depths to approximate true plasmid abundance, we found that small plasmids (<20 kbp) were underrepresented in ONT ligation read sets (by a mean factor of ~4) but were not underrepresented in ONT rapid read sets. This effect correlated with plasmid size, with the smallest plasmids being the most underrepresented in ONT ligation read sets. We also found lower rates of chimaeric reads in the rapid read sets relative to ligation read sets. These results show that when small plasmid recovery is important, ONT rapid library preparations are preferable to ligation-based protocols.


Genes ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 1105 ◽  
Author(s):  
Astrid P. Heikema ◽  
Deborah Horst-Kreft ◽  
Stefan A. Boers ◽  
Rick Jansen ◽  
Saskia D. Hiltemann ◽  
...  

Illumina and nanopore sequencing technologies are powerful tools that can be used to determine the bacterial composition of complex microbial communities. In this study, we compared nasal microbiota results at genus level using both Illumina and nanopore 16S rRNA gene sequencing. We also monitored the progression of nanopore sequencing in the accurate identification of species, using pure, single species cultures, and evaluated the performance of the nanopore EPI2ME 16S data analysis pipeline. Fifty-nine nasal swabs were sequenced using Illumina MiSeq and Oxford Nanopore 16S rRNA gene sequencing technologies. In addition, five pure cultures of relevant bacterial species were sequenced with the nanopore sequencing technology. The Illumina MiSeq sequence data were processed using bioinformatics modules present in the Mothur software package. Albacore and Guppy base calling, a workflow in nanopore EPI2ME (Oxford Nanopore Technologies—ONT, Oxford, UK) and an in-house developed bioinformatics script were used to analyze the nanopore data. At genus level, similar bacterial diversity profiles were found, and five main and established genera were identified by both platforms. However, probably due to mismatching of the nanopore sequence primers, the nanopore sequencing platform identified Corynebacterium in much lower abundance compared to Illumina sequencing. Further, when using default settings in the EPI2ME workflow, almost all sequence reads that seem to belong to the bacterial genus Dolosigranulum and a considerable part to the genus Haemophilus were only identified at family level. Nanopore sequencing of single species cultures demonstrated at least 88% accurate identification of the species at genus and species level for 4/5 strains tested, including improvements in accurate sequence read identification when the basecaller Guppy and Albacore, and when flowcell versions R9.4 (Oxford Nanopore Technologies—ONT, Oxford, UK) and R9.2 (Oxford Nanopore Technologies—ONT, Oxford, UK) were compared. In conclusion, the current study shows that the nanopore sequencing platform is comparable with the Illumina platform in detection bacterial genera of the nasal microbiota, but the nanopore platform does have problems in detecting bacteria within the genus Corynebacterium. Although advances are being made, thorough validation of the nanopore platform is still recommendable.


Sign in / Sign up

Export Citation Format

Share Document