scholarly journals Learning cis-regulatory principles of ADAR-based RNA editing from CRISPR-mediated mutagenesis

2019 ◽  
Author(s):  
Xin Liu ◽  
Tao Sun ◽  
Anna Shcherbina ◽  
Qin Li ◽  
Kalli Kappel ◽  
...  

AbstractAdenosine-to-inosine (A-to-I) RNA editing catalyzed by ADAR enzymes occurs in double-stranded RNAs (dsRNAs). How the RNA sequence and structure (i.e., the cis-regulation) determine the editing efficiency and specificity is poorly understood, despite a compelling need towards functional understanding of known editing events and transcriptome engineering of desired adenosines. We developed a CRISPR/Cas9-mediated saturation mutagenesis approach to generate comprehensive libraries of point mutations near an editing site and its editing complementary sequence (ECS) at the endogenous genomic locus. We used machine learning to integrate diverse RNA sequence features and computationally predicted structures to model editing levels measured by deep sequencing and identified cis-regulatory features of RNA editing. As proof-of-concept, we applied this integrative approach to three editing substrates. Our models explained over 70% of variation in editing levels. The models indicate that RNA sequence and structure features synergistically determine the editing levels. Our integrative approach can be broadly applied to any editing site towards the goal of deciphering the RNA editing code. It also provides guidance for designing and screening of antisense RNA sequences that form dsRNA duplex with the target transcript for ADAR-mediated transcriptome engineering.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xin Liu ◽  
Tao Sun ◽  
Anna Shcherbina ◽  
Qin Li ◽  
Inga Jarmoskaite ◽  
...  

AbstractAdenosine-to-inosine (A-to-I) RNA editing catalyzed by ADAR enzymes occurs in double-stranded RNAs. Despite a compelling need towards predictive understanding of natural and engineered editing events, how the RNA sequence and structure determine the editing efficiency and specificity (i.e., cis-regulation) is poorly understood. We apply a CRISPR/Cas9-mediated saturation mutagenesis approach to generate libraries of mutations near three natural editing substrates at their endogenous genomic loci. We use machine learning to integrate diverse RNA sequence and structure features to model editing levels measured by deep sequencing. We confirm known features and identify new features important for RNA editing. Training and testing XGBoost algorithm within the same substrate yield models that explain 68 to 86 percent of substrate-specific variation in editing levels. However, the models do not generalize across substrates, suggesting complex and context-dependent regulation patterns. Our integrative approach can be applied to larger scale experiments towards deciphering the RNA editing code.


2002 ◽  
Vol 22 (5) ◽  
pp. 1567-1576 ◽  
Author(s):  
Robert P. Igo ◽  
Sobomabo D. Lawson ◽  
Kenneth Stuart

ABSTRACT RNA editing inserts and deletes uridylates (U's) in kinetoplastid mitochondrial pre-mRNAs by a series of enzymatic steps. Small guide RNAs (gRNAs) specify the edited sequence. Editing, though sometimes extensive, is precise. The effects of mutating pre-mRNA and gRNA sequences in, around, and upstream of the editing site on the specificity and efficiency of in vitro insertion editing were examined. U's could be added opposite guiding pyrimidines, but guiding purines, particularly A's, were required for efficient ligation. A base pair between mRNA and gRNA immediately upstream of the editing site was not required for insertion editing, although it greatly enhanced its efficiency and accuracy. In addition, a gRNA/mRNA duplex upstream of the editing site enhanced insertion editing when it was close to the editing site, but prevented cleavage, and hence editing, when immediately adjacent to the editing site. Thus, several aspects of mRNA-gRNA interaction, as well as gRNA base pairing with added U's, optimize editing efficiency, although they are not required for insertion editing.


2021 ◽  
Vol 7 (2) ◽  
pp. 149
Author(s):  
Sarah-Maria Wege ◽  
Katharina Gejer ◽  
Fabienne Becker ◽  
Michael Bölker ◽  
Johannes Freitag ◽  
...  

The phytopathogenic smut fungus Ustilago maydis is a versatile model organism to study plant pathology, fungal genetics, and molecular cell biology. Here, we report several strategies to manipulate the genome of U. maydis by the CRISPR/Cas9 technology. These include targeted gene deletion via homologous recombination of short double-stranded oligonucleotides, introduction of point mutations, heterologous complementation at the genomic locus, and endogenous N-terminal tagging with the fluorescent protein mCherry. All applications are independent of a permanent selectable marker and only require transient expression of the endonuclease Cas9hf and sgRNA. The techniques presented here are likely to accelerate research in the U. maydis community but can also act as a template for genome editing in other important fungi.


2020 ◽  
Vol 21 (3) ◽  
pp. 777 ◽  
Author(s):  
Lewis E. Fry ◽  
Caroline F. Peddle ◽  
Alun R. Barnard ◽  
Michelle E. McClements ◽  
Robert E. MacLaren

RNA editing aims to treat genetic disease through altering gene expression at the transcript level. Pairing site-directed RNA-targeting mechanisms with engineered deaminase enzymes allows for the programmable correction of G>A and T>C mutations in RNA. This offers a promising therapeutic approach for a range of genetic diseases. For inherited retinal degenerations caused by point mutations in large genes not amenable to single-adeno-associated viral (AAV) gene therapy such as USH2A and ABCA4, correcting RNA offers an alternative to gene replacement. Genome editing of RNA rather than DNA may offer an improved safety profile, due to the transient and potentially reversible nature of edits made to RNA. This review considers the current site-directing RNA editing systems, and the potential to translate these to the clinic for the treatment of inherited retinal degeneration.


2002 ◽  
Vol 22 (19) ◽  
pp. 6726-6734 ◽  
Author(s):  
Tetsuya Miyamoto ◽  
Junichi Obokata ◽  
Masahiro Sugiura

ABSTRACT RNA editing in higher-plant chloroplasts involves C-to-U conversions at specific sites. Although in vivo analyses have been performed, little is known about the biochemical aspects of chloroplast editing reactions. Here we improved our original in vitro system and devised a procedure for preparing active chloroplast extracts not only from tobacco plants but also from pea plants. Using our tobacco in vitro system, cis-acting elements were defined for psbE and petB mRNAs. Distinct proteins were found to bind specifically to each cis-element, a 56-kDa protein to the psbE site and a 70-kDa species to the petB site. Pea chloroplasts lack the corresponding editing site in psbE since T is already present in the DNA. Parallel in vitro analyses with tobacco and pea extracts revealed that the pea plant has no editing activity for psbE mRNAs and lacks the 56-kDa protein, whereas petB mRNAs are edited and the 70-kDa protein is also present. Therefore, coevolution of an editing site and its cognate trans-factor was demonstrated biochemically in psbE mRNA editing between tobacco and pea plants.


Mathematics ◽  
2021 ◽  
Vol 9 (17) ◽  
pp. 2063
Author(s):  
Rami Zakh ◽  
Alexander Churkin ◽  
Franziska Totzeck ◽  
Marina Parr ◽  
Tamir Tuller ◽  
...  

Hepatitis D virus (HDV) is classified according to eight genotypes. The various genotypes are included in the HDVdb database, where each HDV sequence is specified by its genotype. In this contribution, a mathematical analysis is performed on RNA sequences in HDVdb. The RNA folding predicted structures of the Genbank HDV genome sequences in HDVdb are classified according to their coarse-grain tree-graph representation. The analysis allows discarding in a simple and efficient way the vast majority of the sequences that exhibit a rod-like structure, which is important for the virus replication, to attempt to discover other biological functions by structure consideration. After the filtering, there remain only a small number of sequences that can be checked for their additional stem-loops besides the main one that is known to be responsible for virus replication. It is found that a few sequences contain an additional stem-loop that is responsible for RNA editing or other possible functions. These few sequences are grouped into two main classes, one that is well-known experimentally belonging to genotype 3 for patients from South America associated with RNA editing, and the other that is not known at present belonging to genotype 7 for patients from Cameroon. The possibility that another function besides virus replication reminiscent of the editing mechanism in HDV genotype 3 exists in HDV genotype 7 has not been explored before and is predicted by eigenvalue analysis. Finally, when comparing native and shuffled sequences, it is shown that HDV sequences belonging to all genotypes are accentuated in their mutational robustness and thermodynamic stability as compared to other viruses that were subjected to such an analysis.


2017 ◽  
Author(s):  
Gur Pines ◽  
James D. Winkler ◽  
Assaf Pines ◽  
Ryan T. Gill

AbstractThe standard genetic code is robust to mutations and base-pairing errors during transcription and translation. Point mutations are most likely to be synonymous or preserve the chemical properties of the original amino acid. Saturation mutagenesis experiments suggest that in some cases the best performing mutant requires a replacement of more than a single nucleotide within a codon. These replacements are essentially inaccessible to common error-based laboratory engineering techniques that alter single nucleotide per mutation event, due to the extreme rarity of adjacent mutations. In this theoretical study, we suggest a radical reordering of the genetic code that maximizes the mutagenic potential of single nucleotide replacements. We explore several possible genetic codes that allow a greater degree of accessibility to the mutational landscape and may result in a hyper-evolvable organism serving as an ideal platform for directed evolution experiments. We then conclude by evaluating potential applications for recoded organisms within the synthetic biology field.Significance StatementThe conservative nature of the genetic code prevents bioengineers from efficiently accessing the full mutational landscape of a gene using common error-prone methods. Here we present two computational approaches to generate alternative genetic codes with increased accessibility. These new codes allow mutational transition to a larger pool of amino acids and with a greater degree of chemical differences, using a single nucleotide replacement within the codon, thus increasing evolvability both at the single gene and at the genome levels. Given the widespread use of these techniques for strain and protein improvement along with more fundamental evolutionary biology questions, the use of recoded organisms that maximize evolvability should significantly improve the efficiency of directed evolution, library generation and fitness maximization.


2000 ◽  
Vol 11 (suppl 2) ◽  
pp. S106-S115 ◽  
Author(s):  
CHRISTIAN MROWKA ◽  
ANDREAS SCHEDL

Abstract.Normal development of the kidney is a highly complex process that requires precise orchestration of proliferation, differentiation, and apoptosis. In the past few years, a number of genes that regulate these processes, and hence play pivotal roles in kidney development, have been identified. The Wilms' tumor suppressor geneWT1has been shown to be one of these essential regulators of kidney development, and mutations in this gene result in the formation of tumors and developmental abnormalities such as the Denys-Drash and Frasier syndromes. A fascinating aspect of theWT1gene is the multitude of isoforms produced from its genomic locus. In this review, our current understanding of the structural features ofWT1, how they modulate the transcriptional and post-transcriptional activities of the protein, and how mutations affecting individual isoforms can lead to diseased kidneys is summarized. In addition, results from transgenic experiments, which have yielded important findings regarding the function of WT1in vivo, are discussed. Finally, data on the unusual feature of RNA editing ofWT1transcripts are presented, and the relevance of RNA editing for the normal functioning of the WT1 protein in the kidney is discussed.


F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 262
Author(s):  
Alif Choyon ◽  
Ashiqur Rahman ◽  
Md. Hasanuzzaman ◽  
Dewan Md Farid ◽  
Swakkhar Shatabda

RNA editing is a very crucial cellular process affecting protein encoding and is sometimes correlated with the cause of fatal diseases, such as cancer. Thus knowledge about RNA editing sites in a RNA sequence is very important. Adenosine to Inosine (A-to-I) is the most common of the RNA editing events. In this paper,we present PRESa2i, a computation prediction tool for identification of A-to-I RNA editing sites in given RNA sequences. PRESa2i uses a simple, yet effective set of sequence based features generated from RNA sequences and a novel feature selection technique. It uses an incremental decision tree algorithm as the classification algorithm. On a standard benchmark dataset and independent set, it achieves 86.48% accuracy and 90.67% sensitivity and significantly outperforms state-of-the-art methods. We have also implemented a web application based on PRESa2i and made it available freely at: http://brl.uiu.ac.bd/presa2i/index.php. The materials for this paper are also available to use from: https://github.com/swakkhar/RNA-Editing/.


1990 ◽  
Vol 10 (5) ◽  
pp. 2191-2201 ◽  
Author(s):  
J L Bennett ◽  
D A Clayton

RNase MRP is a site-specific endonuclease that processes primer mitochondrial RNA from the leading-strand origin of mitochondrial DNA replication. Using deletional analysis and saturation mutagenesis, we have determined the substrate requirements for cleavage by mouse mitochondrial RNase MRP. Two regions of sequence homology among vertebrate mitochondrial RNA primers, conserved sequence blocks II and III, were found to be critical for both efficient and accurate cleavage; a third region of sequence homology, conserved sequence block I, was dispensable. Analysis of insertion and deletion mutations within conserved sequence block II demonstrated that the specificity of RNase MRP accommodates the natural sequence heterogeneity of conserved sequence block II in vivo. Heterologous assays with human RNase MRP and mutated mouse mitochondrial RNA substrates indicated that sequences essential for substrate recognition are conserved between mammalian species.


Sign in / Sign up

Export Citation Format

Share Document