scholarly journals S1P-S1PR1 activity controls VEGF-A signaling during lymphatic vessel development

2019 ◽  
Author(s):  
AM Golding-Ochsenbein ◽  
S Vidal ◽  
B Wilmering Wetter ◽  
C Guibourdenche ◽  
C Beerli ◽  
...  

AbstractSphingosine-1-phosphate (S1P), a lipid signaling molecule produced by endothelial cells, is required for development and homeostasis of blood vessels. However, its role during lymphatic vessel development is unclear. We show in murine newborns that pharmacologically enhanced S1P signaling increases VEGF-A-dependent LEC proliferation. In contrast, S1PR1 inhibition, mediated by the antagonist NIBR0213 or LEC-specific genetic deletion of S1pr1, promotes filopodia formation and vessel branching, independent of VEGF-A. To investigate the S1P and VEGF-A signaling crosstalk observed in vivo, we used LECs cultured in vitro. We demonstrate that S1P activates endogenous S1PR1 in a constitutive, autocrine manner. Importantly, S1P-S1PR1 activity was required for VEGF-A-induced LEC proliferation and strongly supported ERK1/2 activation and VEGFR-2 trafficking to the perinuclear area. In conclusion, S1P-S1PR1 signaling promotes VEGF-A-dependent LEC proliferation and limits migratory and filopodia-forming responses. Hence, S1P-S1PR1 signaling is required for balanced growth factor-induced lymphangiogenesis and correctly patterned lymphatic vessels during postnatal development.

Blood ◽  
2008 ◽  
Vol 112 (4) ◽  
pp. 1129-1138 ◽  
Author(s):  
Chang Min Yoon ◽  
Bok Sil Hong ◽  
Hyung Geun Moon ◽  
Seyoung Lim ◽  
Pann-Ghill Suh ◽  
...  

Abstract The lymphatic system plays pivotal roles in mediating tissue fluid homeostasis and immunity, and excessive lymphatic vessel formation is implicated in many pathological conditions, which include inflammation and tumor metastasis. However, the molecular mechanisms that regulate lymphatic vessel formation remain poorly characterized. Sphingosine-1-phosphate (S1P) is a potent bioactive lipid that is implicated in a variety of biologic processes such as inflammatory responses and angiogenesis. Here, we first report that S1P acts as a lymphangiogenic mediator. S1P induced migration, capillary-like tube formation, and intracellular Ca2+ mobilization, but not proliferation, in human lymphatic endothelial cells (HLECs) in vitro. Moreover, a Matrigel plug assay demonstrated that S1P promoted the outgrowth of new lymphatic vessels in vivo. HLECs expressed S1P1 and S1P3, and both RNA interference–mediated down-regulation of S1P1 and an S1P1 antagonist significantly blocked S1P-mediated lymphangiogenesis. Furthermore, pertussis toxin, U73122, and BAPTA-AM efficiently blocked S1P-induced in vitro lymphangiogenesis and intracellular Ca2+ mobilization of HLECs, indicating that S1P promotes lymphangiogenesis by stimulating S1P1/Gi/phospholipase C/Ca2+ signaling pathways. Our results suggest that S1P is the first lymphangiogenic bioactive lipid to be identified, and that S1P and its receptors might serve as new therapeutic targets against inflammatory diseases and lymphatic metastasis in tumors.


Author(s):  
Youngkyu Cho ◽  
Kyuhwan Na ◽  
Yesl Jun ◽  
Jihee Won ◽  
Ji Hun Yang ◽  
...  

Lymphangiogenesis is a stage of new lymphatic vessel formation in development and pathology, such as inflammation and tumor metastasis. Physiologically relevant models of lymphatic vessels have been in demand because studies on lymphatic vessels are required for understanding the mechanism of tumor metastasis. In this study, a new three-dimensional lymphangiogenesis model in a tumor microenvironment is proposed, using a newly designed macrofluidic platform. It is verified that controllable biochemical and biomechanical cues, which contribute to lymphangiogenesis, can be applied in this platform. In particular, this model demonstrates that a reconstituted lymphatic vessel has an in vivo–like lymphatic vessel in both physical and biochemical aspects. Since biomechanical stress with a biochemical factor influences robust directional lymphatic sprouting, whether our model closely approximates in vivo, the initial lymphatics in terms of the morphological and genetic signatures is investigated. Furthermore, attempting an incorporation with a tumor spheroid, this study successfully develops a complex tumor microenvironment model for use in lymphangiogenesis and reveals the microenvironment factors that contribute to tumor metastasis. As a first attempt at a coculture model, this reconstituted model is a novel system with a fully three-dimensional structure and can be a powerful tool for pathological drug screening or disease model.


2013 ◽  
Vol 305 (2) ◽  
pp. H203-H210 ◽  
Author(s):  
R. M. Dongaonkar ◽  
T. L. Nguyen ◽  
C. M. Quick ◽  
J. Hardy ◽  
G. A. Laine ◽  
...  

In vitro studies have revealed that acute increases in transmural pressure increase lymphatic vessel contractile function. However, adaptive responses to prolonged changes in transmural pressure in vivo have not been reported. Therefore, we developed a novel bovine mesenteric lymphatic partial constriction model to test the hypothesis that lymphatic vessels exposed to higher transmural pressures adapt functionally to become stronger pumps than vessels exposed to lower transmural pressures. Postnodal mesenteric lymphatic vessels were partially constricted for 3 days. On postoperative day 3, constricted vessels were isolated, and divided into upstream (UP) and downstream (DN) segment groups, and instrumented in an isolated bath. Although there were no differences between the passive diameters of the two groups, both diastolic diameter and systolic diameter were significantly larger in the UP group than in the DN group. The pump index of the UP group was also higher than that in the DN group. In conclusion, this is the first work to report how lymphatic vessels adapt to prolonged changes in transmural pressure in vivo. Our results suggest that vessel segments upstream of the constriction adapt to become both better fluid conduits and lymphatic pumps than downstream segments.


2004 ◽  
Vol 101 (3) ◽  
pp. 687-694 ◽  
Author(s):  
Jun-Ichi Hattori ◽  
Michiaki Yamakage ◽  
Sumihiko Seki ◽  
Kayoko Okazaki ◽  
Akiyoshi Namiki

Background The effects of propofol and sevoflurane on lymphatic vessel activity are unknown. This study aimed to clarify the effects of these anesthetics on lymphatic vessel activity in rats by the use of a technique for mechanical removal of the endothelium. Methods The authors first examined the effects of propofol (8 mg/kg) and sevoflurane (2.0%) on in vivo lymphatic flow by injection of dye into the femoral regions of rats. In the in vitro study, the ends of the vessel segments of rat thoracic duct were connected to a syringe and stopcock, respectively. Spontaneous changes in diameter of each segment were monitored, and the extraluminal side of each segment was exposed to propofol (1 x 10(-6) approximately 3 x 10(-5) M) or sevoflurane (0.5 approximately 2.0%). Endothelial function was eliminated by perfusion of air into the lumen. Results In the dye uptake study, 80% of iliac lymphatic nodes were positively stained in a control group, whereas only 10% and 20% were positively stained in propofol and sevoflurane groups, respectively. In the in vitro study, both of the anesthetics significantly decreased the amplitude of spontaneous activity of lymphatic vessels with or without endothelial function. Sevoflurane inhibited the frequency of lymphatic vessel activity but propofol had no effect on it. When the endothelial function was eliminated, both anesthetics decreased the frequency of spontaneous activity of lymphatic vessels. Conclusions Propofol and sevoflurane seem to have some different effects on endothelial function, which regulates the pacemaking of spontaneous contraction of lymphatic vessels.


Blood ◽  
2005 ◽  
Vol 105 (12) ◽  
pp. 4649-4656 ◽  
Author(s):  
Tohru Morisada ◽  
Yuichi Oike ◽  
Yoshihiro Yamada ◽  
Takashi Urano ◽  
Masaki Akao ◽  
...  

Abstract Angiopoietin (Ang) signaling plays a role in angiogenesis and remodeling of blood vessels through the receptor tyrosine kinase Tie2, which is expressed on blood vessel endothelial cells (BECs). Recently it has been shown that Ang-2 is crucial for the formation of lymphatic vasculature and that defects in lymphangiogenesis seen in Ang-2 mutant mice are rescued by Ang-1. These findings suggest important roles for Ang signaling in the lymphatic vessel system; however, Ang function in lymphangiogenesis has not been characterized. In this study, we reveal that lymphatic vascular endothelial hyaluronan receptor 1-positive (LYVE-1+) lymphatic endothelial cells (LECs) express Tie2 in both embryonic and adult settings, indicating that Ang signaling occurs in lymphatic vessels. Therefore, we examined whether Ang-1 acts on in vivo lymphatic angiogenesis and in vitro growth of LECs. A chimeric form of Ang-1, cartilage oligomeric matrix protein (COMP)-Ang-1, promotes in vivo lymphatic angiogenesis in mouse cornea. Moreover, we found that COMP-Ang-1 stimulates in vitro colony formation of LECs. These Ang-1-induced in vivo and in vitro effects on LECs were suppressed by soluble Tie2-Fc fusion protein, which acts as an inhibitor by sequestering Ang-1. On the basis of these observations, we propose that Ang signaling regulates lymphatic vessel formation through Tie2. (Blood. 2005;105:4649-4656)


2021 ◽  
Vol 12 (8) ◽  
Author(s):  
Heyun Zhang ◽  
Zhangyu Zheng ◽  
Rongqin Zhang ◽  
Yongcong Yan ◽  
Yaorong Peng ◽  
...  

AbstractHepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. SET and MYND domain-containing protein 3 (SMYD3) has been shown to promote the progression of various types of human cancers, including liver cancer; however, the detailed molecular mechanism is still largely unknown. Here, we report that SMYD3 expression in HCC is an independent prognostic factor for survival and promotes the proliferation and migration of HCC cells. We observed that SMYD3 upregulated sphingosine-1-phosphate receptor 1 (S1PR1) promoter activity by methylating histone 3 (H3K4me3). S1PR1 was expressed at high levels in HCC samples, and high S1PR1 expression was associated with shorter survival. S1PR1 expression was also positively correlated with SMYD3 expression in HCC samples. We confirmed that SMYD3 promotes HCC cell growth and migration in vitro and in vivo by upregulating S1PR1 expression. Further investigations revealed that SMYD3 affects critical signaling pathways associated with the progression of HCC through S1PR1. These findings strongly suggest that SMYD3 has a crucial function in HCC progression that is partially mediated by histone methylation at the downstream gene S1PR1, which affects key signaling pathways associated with carcinogenesis and the progression of HCC.


2018 ◽  
Vol 51 (1) ◽  
pp. 11-30 ◽  
Author(s):  
Xiaolan You ◽  
Yuanjie Wang ◽  
Jian Wu ◽  
Qinghong Liu ◽  
Dehu Chen ◽  
...  

Background/Aims: Increased expression of galectin-1 (Gal-1) in gastric cancer (GC) promotes metastasis and correlates with poor prognosis. The mechanisms by which Gal-1 promotes GC metastasis remain unknown. Methods: Gal-1and Sphingosine-1-phosphate receptor 1 (S1PR1) were determined by immunohistochemistry(IHC) and quantitative real time polymerase chain reaction (qRT-PCR) in GC specimens. Stably transfected Gal-1 or S1PR1 into SGC7901 and MGC-803 cells, western blot and invasion assays in vitro and nude mice tumorigenicity in vivo were also employed. Results: Overexpression of Gal-1 enhanced expression of S1PR1 in SGC-7901 cells, and increased cell invasion, while knockdown Gal-1 in MGC-803 cells reduced S1PR1 expression and diminished invasion. Simultaneous knockdown of Gal-1 and overexpression of S1PR1 in MGC803 cells rescued invasive ability of MGC803 cells. S1PR1 was associated with expression of epithelial-to-mesenchymal transition (EMT) markers in vitro and in clinical samples. EMT induced in MGC-803 cells by TGF-β1 was accompanied by S1PR1 activation, while knockdown of S1PR1 reduced response to TGF-β1, suggest that Gal-1 promotes GC invasion by activating EMT through a S1PR1-dependent mechanism. Overexpression of S1PR1 promoted subcutaneous xenograft growth and pulmonary metastases, and enhanced expression of EMT markers. Conclusion: Galectin-1 promotes metastasis in gastric cancer through a S1PR1- dependent mechanism, our results indicate that targeting S1PR1 may be a novel strategy to treat GC metastasis.


2020 ◽  
Vol 10 (4) ◽  
pp. 490-501
Author(s):  
Mozhgan Jahani ◽  
Davood Rezazadeh ◽  
Parisa Mohammadi ◽  
Amir Abdolmaleki ◽  
Amir Norooznezhad ◽  
...  

Blood vessel development is one of the most prominent steps in regenerative medicine due tothe restoration of blood flow to the ischemic tissues and providing the rapid vascularizationin clinical-sized tissue-engineered grafts. However, currently tissue engineering technique isrestricted because of the inadequate in vitro/in vivo tissue vascularization. Some challenges likeas transportation in large scale, distribution of the nutrients and poor oxygen diffusion limit theprogression of vessels in smaller than clinically relevant dimensions as well in vivo integration.In this regard, the scholars attempted to promote the vascularization process relied on the stemcells (SCs), growth factors as well as exosomes and interactions of biomaterials with all of themto enable the emergence of ideal microenvironment which is needed for treatment of unhealthyorgans or tissue regeneration and formation of new blood vessels. Thus, in the present reviewwe aim to describe these approaches, advances, obstacles and opportunities as well as theirapplication in regeneration of heart as a prominent angiogenesis-dependent organ.


2020 ◽  
Vol 4 (6) ◽  
Author(s):  
Lijuan Li ◽  
Lixia An ◽  
Lifang Li ◽  
Yongjuan Zhao

Sphingolipids are formed via the metabolism of sphingomyelin, aconstituent of the plasma membrane, or by denovosynthesis. Enzymatic pathways result in the formation of several different lipid mediators, which are known to have important roles in many cellular processes, including proliferation, apoptosis and migration. Several studies now suggest that these sphingolipid mediators, including ceramide, ceramide 1-phosphate and sphingosine 1-phosphate (S1P), are likely to have an integral role in in?ammation. This can involve, for example, activation of pro-in?ammatory transcription factors in different cell types and induction of cyclooxygenase-2, leading to production of pro-in?ammatory prostaglandins. The mode of action of each sphingolipid is different. Increased ceramide production leads to the formation of ceramide-rich areas of the membrane, which may assemble signalling complexes, whereas S1P acts via high-af?nity G-protein-coupled S1P receptors on the plasma membrane. Recent studies have demonstrated that in vitro effects of sphingolipids on in?ammation can translate into in vivo models. This review will highlight the areas of research where sphingolipids are involved in in?ammation and the mechanisms of action of each mediator. In addition, the therapeutic potential of drugs that alter sphingolipid actions will be examined with reference to disease states, such as asthma and in?ammatory bowel disease, which involve important in?ammatory components. A signi?cant body of research now indicates that sphingolipids are intimately involved in the in?ammatory process and recent studies have demonstrated that these lipids, together with associated enzymes and receptors, can provide effective drug targets for the treatment of pathological in?ammation.


Sign in / Sign up

Export Citation Format

Share Document