scholarly journals Parallel siRNA screens to identify kinase and phosphatase modulators of NF-κB activity following DNA damage

2019 ◽  
Author(s):  
Alexandros Sfikas ◽  
Peter Banks ◽  
Ling-I Su ◽  
George Schlossmacher ◽  
Neil D Perkins ◽  
...  

AbstractDNA damage, such as that experienced by people undergoing chemotherapy, can directly activate NF-κB signalling which in turn can lead to resistance to genotoxic stress. NF-κB signalling is highly regulated by phosphorylation, but the enzymes required for these processes remain largely unknown. Identifying those enzymes responsible for regulating NF-κB activity may yield attractive targets for new clinical therapies, as well as provide the basis for better understanding of signalling network crosstalk. Here we present datasets from two independent RNAi screens using a stable NF-κB reporter U2OS cell line with the aim of identifying enzymes that alter NF-κB activity in response to DNA damage following etoposide and ionising radiation treatments. Although we observed high internal validity and specificity to NF-κB modulation within the screens, there was a striking dissimilarity between the results of the two different screens. These data therefore provide a cautionary lesson regarding the use of RNAi screening but also provide new candidates for kinase and phosphatase regulation of NF-κB activity in response to genotoxic stress.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4216-4216
Author(s):  
Beth A Burke ◽  
Martin Carroll

Abstract Chronic myeloid leukemia (CML) is a two-stage disease associated with the t(9;22) translocation. This translocation fuses the BCR gene with the ABL tyrosine kinase, forming the BCR/ABL oncogene. BCR/ABL is a constitutively activated tyrosine kinase, which causes the first stage of CML, chronic phase. However, it is still unknown why patients progress to the second phase, blast crisis, a phase marked by increased chromosomal abnormalities. Previous data from our lab suggests that cells expressing BCR/ABL have an increase in chromosomal translocations after DNA repair compared to control cells, as assessed by spectral karyotyping. We hypothesized that BCR/ABL alters the apoptotic threshold in response to DNA damage, and we sought to determine if cells lacking BCR/ABL that were unable to undergo apoptosis would show similar responses in DNA damage and repair assays to BCR/ABL expressing cells. In order to study this question we have used an interleukin 3 (IL3) dependent cell line that lacks expression of the pro-apoptotic proteins, Bax and Bak. These cells grow in the presence of IL3 but do not undergo apoptosis after cytokine withdrawal or genotoxic stress. We have generated a subclone of these cells that expresses BCR/ABL. This cell line, designated DBA, grows in the absence of IL3. As expected, growth of the cells in the absence of IL3 is suppressed by the ABL kinase inhibitor, dasatinib. BCR/ABL expressing and control cells proliferate at similar rates following DNA damage. After damage, both control cells and DBA cells have a delay in the G2/M phase of the cell cycle, which is modestly prolonged in BCR/ABL expressing cells. Both control and BCR/ABL expressing cells have a similar amount of DNA damage after irradiation as assessed by pulsed field gel electrophoresis. Additionally, the rate of repair of DNA double strand breaks is not significantly different in the two cell types. Spectral karyotype analysis is ongoing to determine whether error prone DNA repair in BCR/ABL cells is secondary to the effects of BCR/ABL on inhibition of apoptosis or reflects other proposed mechanisms of action of the oncogene.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Min Thura ◽  
Zu Ye ◽  
Abdul Qader Al-Aidaroos ◽  
Qiancheng Xiong ◽  
Jun Yi Ong ◽  
...  

AbstractPRL3, a unique oncotarget, is specifically overexpressed in 80.6% of cancers. In 2003, we reported that PRL3 promotes cell migration, invasion, and metastasis. Herein, firstly, we show that PRL3 induces Polyploid Giant Cancer Cells (PGCCs) formation. PGCCs constitute stem cell-like pools to facilitate cell survival, chemo-resistance, and tumor relapse. The correlations between PRL3 overexpression and PGCCs attributes raised possibilities that PRL3 could be involved in PGCCs formation. Secondly, we show that PRL3+ PGCCs co-express the embryonic stem cell markers SOX2 and OCT4 and arise mainly due to incomplete cytokinesis despite extensive DNA damage. Thirdly, we reveal that PRL3+ PGCCs tolerate prolonged chemotherapy-induced genotoxic stress via suppression of the pro-apoptotic ATM DNA damage-signaling pathway. Fourthly, we demonstrated PRL3-zumab, a First-in-Class humanized antibody drug against PRL3 oncotarget, could reduce tumor relapse in ‘tumor removal’ animal model. Finally, we confirmed that PGCCs were enriched in relapse tumors versus primary tumors. PRL3-zumab has been approved for Phase 2 clinical trials in Singapore, US, and China to block all solid tumors. This study further showed PRL3-zumab could potentially serve an ‘Adjuvant Immunotherapy’ after tumor removal surgery to eliminate PRL3+ PGCC stem-like cells, preventing metastasis and relapse.


2009 ◽  
Vol 29 (4) ◽  
pp. 308-316 ◽  
Author(s):  
Renata Matuo ◽  
Fabrício Garmus Sousa ◽  
Alexandre E. Escargueil ◽  
Ivana Grivicich ◽  
Daniel Garcia-Santos ◽  
...  

Cancers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1289 ◽  
Author(s):  
Xing Bian ◽  
Wenchu Lin

Small cell lung cancer (SCLC), accounting for about 15% of all cases of lung cancer worldwide, is the most lethal form of lung cancer. Despite an initially high response rate of SCLC to standard treatment, almost all patients are invariably relapsed within one year. Effective therapeutic strategies are urgently needed to improve clinical outcomes. Replication stress is a hallmark of SCLC due to several intrinsic factors. As a consequence, constitutive activation of the replication stress response (RSR) pathway and DNA damage repair system is involved in counteracting this genotoxic stress. Therefore, therapeutic targeting of such RSR and DNA damage repair pathways will be likely to kill SCLC cells preferentially and may be exploited in improving chemotherapeutic efficiency through interfering with DNA replication to exert their functions. Here, we summarize potentially valuable targets involved in the RSR and DNA damage repair pathways, rationales for targeting them in SCLC treatment and ongoing clinical trials, as well as possible predictive biomarkers for patient selection in the management of SCLC.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Federica Banfi ◽  
Alicia Rubio ◽  
Mattia Zaghi ◽  
Luca Massimino ◽  
Giulia Fagnocchi ◽  
...  

AbstractThe investigation of genetic forms of juvenile neurodegeneration could shed light on the causative mechanisms of neuronal loss. Schinzel-Giedion syndrome (SGS) is a fatal developmental syndrome caused by mutations in the SETBP1 gene, inducing the accumulation of its protein product. SGS features multi-organ involvement with severe intellectual and physical deficits due, at least in part, to early neurodegeneration. Here we introduce a human SGS model that displays disease-relevant phenotypes. We show that SGS neural progenitors exhibit aberrant proliferation, deregulation of oncogenes and suppressors, unresolved DNA damage, and resistance to apoptosis. Mechanistically, we demonstrate that high SETBP1 levels inhibit P53 function through the stabilization of SET, which in turn hinders P53 acetylation. We find that the inheritance of unresolved DNA damage in SGS neurons triggers the neurodegenerative process that can be alleviated either by PARP-1 inhibition or by NAD + supplementation. These results implicate that neuronal death in SGS originates from developmental alterations mainly in safeguarding cell identity and homeostasis.


Sign in / Sign up

Export Citation Format

Share Document