scholarly journals AUTS2 regulation of synapses for proper synaptic inputs and social communication

2019 ◽  
Author(s):  
Kei Hori ◽  
Kunihiko Yamashiro ◽  
Taku Nagai ◽  
Wei Shan ◽  
Saki F. Egusa ◽  
...  

AbstractImpairments in synapse development are thought to cause numerous psychiatric disorders. Autism susceptibility candidate 2 (AUTS2) gene has been associated with various psychiatric disorders, such as autism and intellectual disabilities. Although roles for AUTS2 in neuronal migration and neuritogenesis have been reported, its involvement in synapse regulation remains unclear. In this study, we found that excitatory synapses were specifically increased in the Auts2-deficient primary cultured neurons as well as Auts2 mutant forebrains. Electrophysiological recordings and immunostaining showed increases in excitatory synaptic inputs as well as c-fos expression in Auts2 mutant brains, suggesting that an altered balance of excitatory and inhibitory inputs enhances brain excitability. Auts2 mutant mice exhibited autistic-like behaviors including impairments in social interaction and altered vocal communication. Together, these findings suggest that AUTS2 regulates excitatory synapse number to coordinate E/I balance in the brain, whose impairment may underlie the pathology of psychiatric disorders in individuals with AUTS2 mutations.

Neuroforum ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jan H. Kirchner ◽  
Julijana Gjorgjieva

Abstract Single neurons in the brain exhibit astounding computational capabilities, which gradually emerge throughout development and enable them to become integrated into complex neural circuits. These capabilities derive in part from the precise arrangement of synaptic inputs on the neurons’ dendrites. While the full computational benefits of this arrangement are still unknown, a picture emerges in which synapses organize according to their functional properties across multiple spatial scales. In particular, on the local scale (tens of microns), excitatory synaptic inputs tend to form clusters according to their functional similarity, whereas on the scale of individual dendrites or the entire tree, synaptic inputs exhibit dendritic maps where excitatory synapse function varies smoothly with location on the tree. The development of this organization is supported by inhibitory synapses, which are carefully interleaved with excitatory synapses and can flexibly modulate activity and plasticity of excitatory synapses. Here, we summarize recent experimental and theoretical research on the developmental emergence of this synaptic organization and its impact on neural computations.


2020 ◽  
Author(s):  
Roberto De Filippo ◽  
Benjamin R. Rost ◽  
Alexander Stumpf ◽  
Claire Cooper ◽  
John J. Tukker ◽  
...  

AbstractSerotonin (5-HT) affects multiple physiological processes in the brain and is involved in a number of psychiatric disorders. 5-HT axons reach all cortical areas; however, the precise mechanism by which 5-HT modulates cortical network activity is not yet fully understood. We investigated the effects of 5-HT on slow oscillations (SO), a synchronized cortical network activity universally present across species. SO are observed during slow-wave sleep and anesthesia and are considered the default cortical activity pattern. Combining opto- and pharmacogenetic manipulations with electrophysiological recordings, we discovered that 5-HT inhibits SO within the entorhinal cortex (EC) by activating somatostatin-expressing (Som) interneurons via the 5-HT2A receptor (5-HT2AR). This receptor is involved in the etiology of different psychiatric disorders and mediates the psychological effects of many psychoactive serotonergic drugs, suggesting that 5-HT targeting of Som interneurons may play an important role in these processes.


2021 ◽  
Author(s):  
Daniel Y Takahashi ◽  
Ahmed El Hady ◽  
Yisi S Zhang ◽  
Diana A Liao ◽  
Gabriel Montaldo ◽  
...  

During social interactions, individuals influence each other to coordinate their actions. Vocal communication is an exceptionally efficient way to exert such influence. Where and how social interactions are dynamically modulated in the brain is unknown. We used functional ultrasound imaging in marmoset monkeys, a highly vocal species, to investigate the dynamics of medial social brain areas in vocal perception, production, and audio-vocal interaction. We found that the activity of a distributed network of subcortical and cortical regions distinguishes calls associated with different social contexts. This same brain network showed different dynamics during externally and internally driven vocalizations. These findings suggest the existence of a social-vocal brain network in medial cortical and subcortical areas that is fundamental in social communication.


2006 ◽  
Author(s):  
Katie M. Albanos ◽  
Steve Reilly ◽  
Justin R. St. Andre

2021 ◽  
Vol 22 (9) ◽  
pp. 4511
Author(s):  
Chiara A. De Benedictis ◽  
Claudia Haffke ◽  
Simone Hagmeyer ◽  
Ann Katrin Sauer ◽  
Andreas M. Grabrucker

In the last years, research has shown that zinc ions play an essential role in the physiology of brain function. Zinc acts as a potent neuromodulatory agent and signaling ions, regulating healthy brain development and the function of both neurons and glial cells. Therefore, the concentration of zinc within the brain and its cells is tightly controlled. Zinc transporters are key regulators of (extra-) cellular zinc levels, and deregulation of zinc homeostasis and zinc transporters has been associated with neurodegenerative and neuropsychiatric disorders. However, to date, the presence of specific family members and their subcellular localization within brain cells have not been investigated in detail. Here, we analyzed the expression of all zinc transporters (ZnTs) and Irt-like proteins (ZIPs) in the rat brain. We further used primary rat neurons and rat astrocyte cell lines to differentiate between the expression found in neurons or astrocytes or both. We identified ZIP4 expressed in astrocytes but significantly more so in neurons, a finding that has not been reported previously. In neurons, ZIP4 is localized to synapses and found in a complex with major postsynaptic scaffold proteins of excitatory synapses. Synaptic ZIP4 reacts to short-term fluctuations in local zinc levels. We conclude that ZIP4 may have a so-far undescribed functional role at excitatory postsynapses.


Neuroreport ◽  
1997 ◽  
Vol 8 (3) ◽  
pp. 725-728 ◽  
Author(s):  
E Wallhäusser-Franke
Keyword(s):  

1983 ◽  
Vol 17 (4) ◽  
pp. 307-318 ◽  
Author(s):  
H. G. Stampfer

This article suggests that the potential usefulness of event-related potentials in psychiatry has not been fully explored because of the limitations of various approaches to research adopted to date, and because the field is still undergoing rapid development. Newer approaches to data acquisition and methods of analysis, combined with closer co-operation between medical and physical scientists, will help to establish the practical application of these signals in psychiatric disorders and assist our understanding of psychophysiological information processing in the brain. Finally, it is suggested that psychiatrists should seek to understand these techniques and the data they generate, since they provide more direct access to measures of complex cerebral processes than current clinical methods.


2021 ◽  
Vol 22 (14) ◽  
pp. 7277
Author(s):  
Federica Cherchi ◽  
Irene Bulli ◽  
Martina Venturini ◽  
Anna Maria Pugliese ◽  
Elisabetta Coppi

Multiple sclerosis (MS) is the most demyelinating disease of the central nervous system (CNS) characterized by neuroinflammation. Oligodendrocyte progenitor cells (OPCs) are cycling cells in the developing and adult CNS that, under demyelinating conditions, migrate to the site of lesions and differentiate into mature oligodendrocytes to remyelinate damaged axons. However, this process fails during disease chronicization due to impaired OPC differentiation. Moreover, OPCs are crucial players in neuro-glial communication as they receive synaptic inputs from neurons and express ion channels and neurotransmitter/neuromodulator receptors that control their maturation. Ion channels are recognized as attractive therapeutic targets, and indeed ligand-gated and voltage-gated channels can both be found among the top five pharmaceutical target groups of FDA-approved agents. Their modulation ameliorates some of the symptoms of MS and improves the outcome of related animal models. However, the exact mechanism of action of ion-channel targeting compounds is often still unclear due to the wide expression of these channels on neurons, glia, and infiltrating immune cells. The present review summarizes recent findings in the field to get further insights into physio-pathophysiological processes and possible therapeutic mechanisms of drug actions.


Sign in / Sign up

Export Citation Format

Share Document