spontaneous behavior
Recently Published Documents


TOTAL DOCUMENTS

141
(FIVE YEARS 29)

H-INDEX

27
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Jacqueline Chen ◽  
Kimberly A Quinn ◽  
Keith Brian Maddox

This chapter explores the largely parallel progressions of person memory and stereotyping research in social cognition, with particular focus on spontaneous inferences drawn from descriptions of behavior or social group membership. We consider the potential benefits of several potential empirical intersections for theory and for a more open and inclusive psychological science.


2021 ◽  
Vol 53 ◽  
pp. S535
Author(s):  
B.R. Buca ◽  
G.E. Popa ◽  
P.A. Fotache ◽  
M. Bogdan ◽  
L. Mititelu-Tartau

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Aylesse Sordillo ◽  
Cornelia I Bargmann

Coordinated transitions between mutually exclusive motor states are central to behavioral decisions. During locomotion, the nematode Caenorhabditis elegans spontaneously cycles between forward runs, reversals, and turns with complex but predictable dynamics. Here, we provide insight into these dynamics by demonstrating how RIM interneurons, which are active during reversals, act in two modes to stabilize both forward runs and reversals. By systematically quantifying the roles of RIM outputs during spontaneous behavior, we show that RIM lengthens reversals when depolarized through glutamate and tyramine neurotransmitters and lengthens forward runs when hyperpolarized through its gap junctions. RIM is not merely silent upon hyperpolarization: RIM gap junctions actively reinforce a hyperpolarized state of the reversal circuit. Additionally, the combined outputs of chemical synapses and gap junctions from RIM regulate forward-to-reversal transitions. Our results indicate that multiple classes of RIM synapses create behavioral inertia during spontaneous locomotion.


2021 ◽  
Vol 15 ◽  
Author(s):  
Fabrizio Grieco ◽  
Briana J. Bernstein ◽  
Barbara Biemans ◽  
Lior Bikovski ◽  
C. Joseph Burnett ◽  
...  

The reproducibility crisis (or replication crisis) in biomedical research is a particularly existential and under-addressed issue in the field of behavioral neuroscience, where, in spite of efforts to standardize testing and assay protocols, several known and unknown sources of confounding environmental factors add to variance. Human interference is a major contributor to variability both within and across laboratories, as well as novelty-induced anxiety. Attempts to reduce human interference and to measure more "natural" behaviors in subjects has led to the development of automated home-cage monitoring systems. These systems enable prolonged and longitudinal recordings, and provide large continuous measures of spontaneous behavior that can be analyzed across multiple time scales. In this review, a diverse team of neuroscientists and product developers share their experiences using such an automated monitoring system that combines Noldus PhenoTyper® home-cages and the video-based tracking software, EthoVision® XT, to extract digital biomarkers of motor, emotional, social and cognitive behavior. After presenting our working definition of a “home-cage”, we compare home-cage testing with more conventional out-of-cage tests (e.g., the open field) and outline the various advantages of the former, including opportunities for within-subject analyses and assessments of circadian and ultradian activity. Next, we address technical issues pertaining to the acquisition of behavioral data, such as the fine-tuning of the tracking software and the potential for integration with biotelemetry and optogenetics. Finally, we provide guidance on which behavioral measures to emphasize, how to filter, segment, and analyze behavior, and how to use analysis scripts. We summarize how the PhenoTyper has applications to study neuropharmacology as well as animal models of neurodegenerative and neuropsychiatric illness. Looking forward, we examine current challenges and the impact of new developments. Examples include the automated recognition of specific behaviors, unambiguous tracking of individuals in a social context, the development of more animal-centered measures of behavior and ways of dealing with large datasets. Together, we advocate that by embracing standardized home-cage monitoring platforms like the PhenoTyper, we are poised to directly assess issues pertaining to reproducibility, and more importantly, measure features of rodent behavior under more ethologically relevant scenarios.


2021 ◽  
Author(s):  
Hadas Benisty ◽  
Andrew H Moberly ◽  
Sweyta Lohani ◽  
Daniel Barson ◽  
Ronald R Coifman ◽  
...  

Experimental work across a variety of species has demonstrated that spontaneously generated behaviors are robustly coupled to variation in neural activity within the cerebral cortex. Indeed, functional magnetic resonance imaging (fMRI) data suggest that functional connectivity in cortical networks varies across distinct behavioral states, providing for the dynamic reorganization of patterned activity. However, these studies generally lack the temporal resolution to establish links between cortical signals and the continuously varying fluctuations in spontaneous behavior typically observed in awake animals. Here, we took advantage of recent developments in wide-field, mesoscopic calcium imaging to monitor neural activity across the neocortex of awake mice. Applying a novel approach to quantifying time-varying functional connectivity, we show that spontaneous behaviors are more accurately represented by fast changes in the correlational structure versus the magnitude of large-scale network activity. Moreover, dynamic functional connectivity reveals subnetworks that are not predicted by traditional anatomical atlas-based parcellation of the cortex. These results provide insight into how behavioral information is represented across the mammalian neocortex and demonstrate a new analytical framework for investigating time-varying functional connectivity in neural networks.


2021 ◽  
Author(s):  
Jaakko Paasonen ◽  
Petteri Stenroos ◽  
Hanne Laakso ◽  
Tiina Pirttimaki ◽  
Ekaterina Paasonen ◽  
...  

Understanding the link between the brain activity and behavior is a key challenge in modern neuroscience. Behavioral neuroscience, however, lacks tools to record whole-brain activity in complex behavioral settings. Here we demonstrate that a novel Multi-Band SWeep Imaging with Fourier Transformation (MB-SWIFT) functional magnetic resonance imaging (fMRI) approach enables whole-brain studies in spontaneously behaving head-fixed rats. First, we show anatomically relevant functional parcellation. Second, we show sensory, motor, exploration, and stress-related brain activity in relevant networks during corresponding spontaneous behavior. Third, we show odor-induced activation of olfactory system with high correlation between the fMRI and behavioral responses. We conclude that the applied methodology enables novel behavioral study designs in rodents focusing on tasks, cognition, emotions, physical exercise, and social interaction. Importantly, novel zero echo time and large bandwidth approaches, such as MB-SWIFT, can be applied for human behavioral studies, allowing more freedom as body movement is dramatically less restricting factor.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kang Huang ◽  
Yaning Han ◽  
Ke Chen ◽  
Hongli Pan ◽  
Gaoyang Zhao ◽  
...  

AbstractAnimal behavior usually has a hierarchical structure and dynamics. Therefore, to understand how the neural system coordinates with behaviors, neuroscientists need a quantitative description of the hierarchical dynamics of different behaviors. However, the recent end-to-end machine-learning-based methods for behavior analysis mostly focus on recognizing behavioral identities on a static timescale or based on limited observations. These approaches usually lose rich dynamic information on cross-scale behaviors. Here, inspired by the natural structure of animal behaviors, we address this challenge by proposing a parallel and multi-layered framework to learn the hierarchical dynamics and generate an objective metric to map the behavior into the feature space. In addition, we characterize the animal 3D kinematics with our low-cost and efficient multi-view 3D animal motion-capture system. Finally, we demonstrate that this framework can monitor spontaneous behavior and automatically identify the behavioral phenotypes of the transgenic animal disease model. The extensive experiment results suggest that our framework has a wide range of applications, including animal disease model phenotyping and the relationships modeling between the neural circuits and behavior.


Author(s):  
Aylesse Sordillo ◽  
Cornelia I. Bargmann

ABSTRACTCoordinated transitions between mutually exclusive motor states are central to behavioral decisions. During locomotion, the nematode Caenorhabditis elegans spontaneously cycles between forward runs, reversals, and turns with complex but predictable dynamics. Here we provide insight into these dynamics by demonstrating how RIM interneurons, which are active during reversals, act in two modes to stabilize both forward runs and reversals. By systematically quantifying the roles of RIM outputs during spontaneous behavior, we show that RIM lengthens reversals when depolarized through glutamate and tyramine neurotransmitters and lengthens forward runs when hyperpolarized through its gap junctions. RIM is not merely silent upon hyperpolarization: RIM gap junctions actively reinforce a hyperpolarized state of the reversal circuit. Additionally, the combined outputs of chemical synapses and gap junctions from RIM regulate forward-to-reversal transitions. Our results indicate that multiple classes of RIM synapses create behavioral inertia during spontaneous locomotion.


2020 ◽  
Vol 6 (46) ◽  
pp. eabb3989
Author(s):  
Katsuma Inoue ◽  
Kohei Nakajima ◽  
Yasuo Kuniyoshi

Chaotic itinerancy is a frequently observed phenomenon in high-dimensional nonlinear dynamical systems and is characterized by itinerant transitions among multiple quasi-attractors. Several studies have pointed out that high-dimensional activity in animal brains can be observed to exhibit chaotic itinerancy, which is considered to play a critical role in the spontaneous behavior generation of animals. Thus, how to design desired chaotic itinerancy is a topic of great interest, particularly for neurorobotics researchers who wish to understand and implement autonomous behavioral controls. However, it is generally difficult to gain control over high-dimensional nonlinear dynamical systems. In this study, we propose a method for implementing chaotic itinerancy reproducibly in a high-dimensional chaotic neural network. We demonstrate that our method enables us to easily design both the trajectories of quasi-attractors and the transition rules among them simply by adjusting the limited number of system parameters and by using the intrinsic high-dimensional chaos.


Sign in / Sign up

Export Citation Format

Share Document