scholarly journals The C-terminal domain of Clostridioides difficile TcdC is exposed on the bacterial cell surface

2019 ◽  
Author(s):  
Ana M. Oliveira Paiva ◽  
Leen de Jong ◽  
Annemieke H. Friggen ◽  
Wiep Klaas Smits ◽  
Jeroen Corver

AbstractClostridioides difficile is an anaerobic gram-positive bacterium that can can produce the large clostridial toxins, Toxin A and Toxin B, encoded within the pathogenicity locus (PaLoc). The PaLoc also encodes the sigma factor TcdR, that positively regulates toxin gene expression, and TcdC, a putative negative regulator of toxin expression. TcdC is proposed to be an anti-sigma factor, however, several studies failed to show an association between tcdC genotype and toxin production. Consequently, TcdC function is not yet fully understood. Previous studies have characterized TcdC as a membrane-associated protein with the ability to bind G-quadruplex structures. The binding to the DNA secondary structures is mediated through the OB-fold domain present at the C-terminus of the protein. This domain was previously also proposed to be responsible for the inhibitory effect on toxin gene expression, implicating a cytoplasmic localization of the C-terminal OB-fold.In this study we aimed to obtain topological information on the C-terminus of TcdC. Using Scanning Cysteine Accessibility Mutagenesis and a HiBiT-based system, we demonstrate that the C-terminus of TcdC is located extracellularly. The extracellular location of TcdC is not compatible with direct binding of the OB-fold domain to intracellular nucleic acid or protein targets, and suggests a mechanism of action that is different from characterized anti-sigma factors.ImportanceTranscription of the C. difficile large clostrididial toxins (TcdA and TcdB) is directed by the sigma factor TcdR. TcdC has been implicated as a negative regulator, possible acting as an anti-sigma factor.Activity of TcdC has been mapped to its C-terminal OB fold domain. TcdC is anchored in the bacterial membrane, through its hydrophobic N-terminus and acting as an anti-sigma factor would require cytoplasmic localization of the C-terminal domain.Remarkably, topology predictions for TcdC suggest the N-terminus to be membrane localized and the C-terminal domain to be located extracellularly. Using independent assays, we show that the C-terminus of TcdC indeed is located in the extracellular environment, which is incompatible with its proposed role as anti-sigma factor in toxin regulation.


2020 ◽  
Vol 202 (22) ◽  
Author(s):  
Ana M. Oliveira Paiva ◽  
Leen de Jong ◽  
Annemieke H. Friggen ◽  
Wiep Klaas Smits ◽  
Jeroen Corver

ABSTRACT Clostridioides difficile is an anaerobic Gram-positive bacterium that can produce the large clostridial toxins toxin A and toxin B, encoded within the pathogenicity locus (PaLoc). The PaLoc also encodes the sigma factor TcdR, which positively regulates toxin gene expression, and TcdC, which is a putative negative regulator of toxin expression. TcdC is proposed to be an anti-sigma factor; however, several studies failed to show an association between the tcdC genotype and toxin production. Consequently, the TcdC function is not yet fully understood. Previous studies have characterized TcdC as a membrane-associated protein with the ability to bind G-quadruplex structures. The binding to the DNA secondary structures is mediated through the oligonucleotide/oligosaccharide binding fold (OB-fold) domain present at the C terminus of the protein. This domain was previously also proposed to be responsible for the inhibitory effect on toxin gene expression, implicating a cytoplasmic localization of the OB-fold. In this study, we aimed to obtain topological information on the C terminus of TcdC and demonstrate that the C terminus of TcdC is located extracellularly. In addition, we show that the membrane association of TcdC is dependent on a membrane-proximal cysteine residue and that mutating this residue results in the release of TcdC from the bacterial cell. The extracellular location of TcdC is not compatible with the direct binding of the OB-fold domain to intracellular nucleic acid or protein targets and suggests a mechanism of action that is different from that of the characterized anti-sigma factors. IMPORTANCE The transcription of C. difficile toxins TcdA and TcdB is directed by the sigma factor TcdR. TcdC has been proposed to be an anti-sigma factor. The activity of TcdC has been mapped to its C terminus, and the N terminus serves as the membrane anchor. Acting as an anti-sigma factor requires a cytoplasmic localization of the C terminus of TcdC. Using cysteine accessibility analysis and a HiBiT-based system, we show that the TcdC C terminus is located extracellularly, which is incompatible with its role as anti-sigma factor. Furthermore, mutating a cysteine residue at position 51 resulted in the release of TcdC from the bacteria. The codon-optimized version of the HiBiT (HiBiTopt) extracellular detection system is a valuable tool for topology determination of membrane proteins, increasing the range of systems available to tackle important aspects of C. difficile development.



mBio ◽  
2019 ◽  
Vol 10 (2) ◽  
Author(s):  
Adrianne N. Edwards ◽  
Brandon R. Anjuwon-Foster ◽  
Shonna M. McBride

ABSTRACTClostridioides difficileinfection (CDI) is a toxin-mediated diarrheal disease. Several factors have been identified that influence the production of the two majorC. difficiletoxins, TcdA and TcdB, but prior published evidence suggested that additional unknown factors were involved in toxin regulation. Previously, we identified aC. difficileregulator, RstA, that promotes sporulation and represses motility and toxin production. We observed that the predicted DNA-binding domain of RstA was required for RstA-dependent repression of toxin genes, motility genes, andrstAtranscription. In this study, we further investigated the regulation of toxin and motility gene expression by RstA. DNA pulldown assays confirmed that RstA directly binds therstApromoter via the predicted DNA-binding domain. Through mutational analysis of therstApromoter, we identified several nucleotides that are important for RstA-dependent transcriptional regulation. Further, we observed that RstA directly binds and regulates the promoters of the toxin genestcdAandtcdB, as well as the promoters for thesigDandtcdRgenes, which encode regulators of toxin gene expression. Complementation analyses with theClostridium perfringensRstA ortholog and a multispecies chimeric RstA protein revealed that theC. difficileC-terminal domain is required for RstA DNA-binding activity, suggesting that species-specific signaling controls RstA function. Our data demonstrate that RstA is a transcriptional repressor that autoregulates its own expression and directly inhibits transcription of the two toxin genes and two positive toxin regulators, thereby acting at multiple regulatory points to control toxin production.IMPORTANCEClostridioides difficileis an anaerobic, gastrointestinal pathogen of humans and other mammals.C. difficileproduces two major toxins, TcdA and TcdB, which cause the symptoms of the disease, and forms dormant endospores to survive the aerobic environment outside the host. A recently discovered regulatory factor, RstA, inhibits toxin production and positively influences spore formation. Herein, we determine that RstA directly binds its own promoter DNA to repress its own gene transcription. In addition, our data demonstrate that RstA directly represses toxin gene expression and gene expression of two toxin gene activators, TcdR and SigD, creating a complex regulatory network to tightly control toxin production. This study provides a novel regulatory link betweenC. difficilesporulation and toxin production. Further, our data suggest thatC. difficiletoxin production is regulated through a direct, species-specific sensing mechanism.



1993 ◽  
Vol 13 (4) ◽  
pp. 2420-2431 ◽  
Author(s):  
D C Huang ◽  
C J Marshall ◽  
J F Hancock

Although p21ras is localized to the plasma membrane, proteins it interacts with, such as the GTPase-activating proteins (GAPs) ras GAP and neurofibromin (NF1), are not, suggesting that one function of p21ras GTP may be to target such proteins to the plasma membrane. To investigate the effects of targeting ras GAP to the plasma membrane, ras C-terminal motifs sufficient for plasma membrane localization of p21ras were cloned onto the C terminus of ras GAP. Plasma membrane-targeted ras GAP is growth inhibitory to NIH 3T3 fibroblasts and COS cells. This growth inhibition correlates with GAP catalytic activity, since the plasma membrane-targeted C-terminal catalytic domain or the GAP-related domain of neurofibromin is inhibitory, whereas the similarly targeted N-terminal domain is not. Moreover, the inhibition is abrogated by the inactivating mutation L902I, which abolishes ras GAP catalytic activity. Coexpression of oncogenic mutant ras rescues cell viability, but the majority of rescued colonies are phenotypically untransformed. Furthermore, in focus assays, targeted ras GAP suppresses transformation by oncogenic mutant ras, and in reversion assays, targeted ras GAP can revert cells transformed by oncogenic mutant ras. Neither the targeted or nontargeted N-terminal domain nor the L902I mutant of ras GAP has any transforming activity. These data demonstrate that ras GAP can function as a negative regulator of ras and that plasma membrane localization potentiates this activity. However, if ras GAP is involved in the effector functions of p21ras, it can only be part of the effector complex for cell transformation.



2021 ◽  
pp. mbc.E20-07-0500
Author(s):  
Eri Hirata ◽  
Kyo Shirai ◽  
Tatsuya Kawaoka ◽  
Kosuke Sato ◽  
Fumito Kodama ◽  
...  

Autophagy is a cellular degradation system widely conserved among eukaryotes. During autophagy, cytoplasmic materials fated for degradation are compartmentalized in double membrane–bound organelles called autophagosomes. After fusing with the vacuole, their inner membrane–bound structures are released into the vacuolar lumen to become autophagic bodies and eventually degraded by vacuolar hydrolases. Atg15 is a lipase essential for disintegration of autophagic body membranes and has a transmembrane domain at the N-terminus and a lipase domain at the C-terminus. However, the roles of both domains in vivo are not well understood. In this study, we found that the N-terminal domain alone can travel to the vacuole via the multivesicular body pathway, and that targeting of the C-terminal lipase domain to the vacuole is required for degradation of autophagic bodies. Moreover, we found that the C-terminal domain could disintegrate autophagic bodies when it was transported to the vacuole via the Pho8 pathway instead of the multivesicular body pathway. Finally, we identified H435 as one of the residues composing the putative catalytic triad, and W466 as an important residue for degradation of autophagic bodies. This study may provide a clue to understanding how the C-terminal lipase domain recognizes autophagic bodies to degrade them. [Media: see text] [Media: see text]



2018 ◽  
Author(s):  
Adrianne N. Edwards ◽  
Brandon R. Anjuwon-Foster ◽  
Shonna M. McBride

ABSTRACTClostridioides difficileinfection (CDI) is a toxin-mediated disease. Several factors have been identified that influence the production of the two majorC. difficiletoxins, TcdA and TcdB, but prior published evidence suggested that additional unknown factors were involved in toxin regulation. Previously, we identified aC. difficileregulator, RstA, that promotes sporulation and represses motility and toxin production. We observed that the predicted DNA-binding domain of RstA was required for RstA-dependent repression of toxin genes, motility genes andrstAtranscription. In this study, we further investigated the regulation of toxin and motility gene expression by RstA. DNA pulldown assays confirmed that RstA directly binds therstApromoter via the predicted DNA-binding domain. Through mutational analysis of therstApromoter, we identified several nucleotides that are important for RstA-dependent transcriptional regulation. Further, we observed that RstA directly binds and regulates the promoters of the toxin genes,tcdAandtcdB, as well as the promoters for thesigDandtcdRgenes, which encode regulators of toxin gene expression. Complementation analyses with theClostridium perfringensRstA ortholog and a multi-species chimeric RstA protein revealed that theC. difficileC-terminal domain is required for RstA DNA-binding activity, suggesting that species-specific signaling controls RstA function. Our data demonstrate that RstA is a transcriptional repressor that autoregulates its own expression and directly inhibits transcription of the two toxin genes and two positive toxin regulators, thereby acting at multiple regulatory points to control toxin production.IMPORTANCEClostridioides difficileis an anaerobic, gastrointestinal pathogen of humans and other mammals.C. difficileproduces two major toxins, TcdA and TcdB, which cause the symptoms of the disease, and forms dormant endospores to survive the aerobic environment outside of the host. A recently discovered regulatory factor, RstA, inhibits toxin production and positively influences spore formation. Herein, we determine that RstA directly represses toxin gene expression and gene expression of two toxin gene activators, TcdR and SigD, creating a complex regulatory network to tightly control toxin production. In addition, the ability for RstA to bind DNA and repress toxin production requires the species-specific domain predicted to respond to small quorum-sensing peptides. This study provides a novel regulatory link betweenC. difficilesporulation and toxin production. Further, our data suggest thatC. difficiletoxin production is regulated through a direct sensing mechanism.



2019 ◽  
Vol 202 (2) ◽  
Author(s):  
Adrianne N. Edwards ◽  
Ellen G. Krall ◽  
Shonna M. McBride

ABSTRACT The anaerobic spore former Clostridioides difficile causes significant diarrheal disease in humans and other mammals. Infection begins with the ingestion of dormant spores, which subsequently germinate within the host gastrointestinal tract. There, the vegetative cells proliferate and secrete two exotoxins, TcdA and TcdB, which cause disease symptoms. Although spore formation and toxin production are critical for C. difficile pathogenesis, the regulatory links between these two physiological processes are not well understood and are strain dependent. Previously, we identified a conserved C. difficile regulator, RstA, that promotes sporulation initiation through an unknown mechanism and directly and indirectly represses toxin and motility gene transcription in the historical isolate 630Δerm. To test whether perceived strain-dependent differences in toxin production and sporulation are mediated by RstA, we created an rstA mutant in the epidemic ribotype 027 strain R20291. RstA affected sporulation and toxin gene expression similarly but more robustly in R20291 than in 630Δerm. In contrast, no effect on motility gene expression was observed in R20291. Reporter assays measuring transcriptional regulation of tcdR, the sigma factor gene essential for toxin gene expression, identified sequence-dependent effects influencing repression by RstA and CodY, a global nutritional sensor, in four diverse C. difficile strains. Finally, sequence- and strain-dependent differences were evident in RstA negative autoregulation of rstA transcription. Altogether, our data suggest that strain-dependent differences in RstA regulation contribute to the sporulation and toxin phenotypes observed in R20291. Our data establish RstA as an important regulator of C. difficile virulence traits. IMPORTANCE Two critical traits of Clostridioides difficile pathogenesis are toxin production, which causes disease symptoms, and spore formation, which permits survival outside the gastrointestinal tract. The multifunctional regulator RstA promotes sporulation and prevents toxin production in the historical strain 630Δerm. Here, we show that RstA exhibits stronger effects on these phenotypes in an epidemic isolate, R20291, and additional strain-specific effects on toxin and rstA expression are evident. Our data demonstrate that sequence-specific differences within the promoter for the toxin regulator TcdR contribute to the regulation of toxin production by RstA and CodY. These sequence differences account for some of the variability in toxin production among isolates and may allow strains to differentially control toxin production in response to a variety of signals.



2004 ◽  
Vol 186 (9) ◽  
pp. 2692-2698 ◽  
Author(s):  
Jeremy Allen Smith ◽  
Roy David Magnuson

ABSTRACT The P1 plasmid addiction operon is a compact genetic structure consisting of promoter, operator, antitoxin gene (phd), and toxin gene (doc). The 73-amino-acid antitoxin protein, Phd, has two distinct functions: it represses transcription (by binding to its operator) and it prevents host death (by binding and neutralizing the toxin). Here, we show that the N terminus of Phd is required for repressor but not antitoxin activity. Conversely, the C terminus is required for antitoxin but not repressor activity. Only a quarter of the protein, the resolution limit of this analysis, was required for both activities. We suggest that the plasmid addiction operon is a composite of two evolutionarily separable modules, an operator-repressor module and an antitoxin-toxin module. Consideration of similar antitoxin proteins and their surroundings indicates that modular exchange may contribute to antitoxin and operon diversity.



2006 ◽  
Vol 189 (5) ◽  
pp. 1874-1883 ◽  
Author(s):  
Maria Hadjifrangiskou ◽  
Yahua Chen ◽  
Theresa M. Koehler

ABSTRACT Expression of the structural genes for the anthrax toxin proteins is coordinately controlled by host-related signals, such as elevated CO2, and the trans-acting positive regulator AtxA. In addition to these requirements, toxin gene expression is under growth phase regulation. The transition state regulator AbrB represses atxA expression to influence toxin synthesis. During the late exponential phase of growth, when AbrB levels begin to decrease, toxin synthesis increases. Here we report that toxin gene expression also requires the presence of sigH, a gene encoding the RNA polymerase sigma factor associated with development in Bacillus subtilis. In the well-studied B. subtilis system, σH is required for sporulation and other post-exponential-phase processes and is part of a feedback control pathway for abrB expression. Our data indicate that a Bacillus anthracis sigH-null mutant is asporogenous and toxin deficient. Yet the sigma factor is required for toxin gene expression in a manner that is independent of the pathway leading to post-exponential-phase gene expression. σH positively controls atxA in an AbrB-independent manner. These findings, combined with previous observations, suggest that the steady-state level of atxA expression is critical for optimal toxin gene transcription. We propose a model whereby, under toxin-inducing growth conditions, control of toxin gene expression is fine-tuned by the independent effects of σH and AbrB on the expression of atxA.



eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Bei Wu ◽  
Alex J McDonald ◽  
Kathleen Markham ◽  
Celeste B Rich ◽  
Kyle P McHugh ◽  
...  

PrPC, the cellular isoform of the prion protein, serves to transduce the neurotoxic effects of PrPSc, the infectious isoform, but how this occurs is mysterious. Here, using a combination of electrophysiological, cellular, and biophysical techniques, we show that the flexible, N-terminal domain of PrPC functions as a powerful toxicity-transducing effector whose activity is tightly regulated in cis by the globular C-terminal domain. Ligands binding to the N-terminal domain abolish the spontaneous ionic currents associated with neurotoxic mutants of PrP, and the isolated N-terminal domain induces currents when expressed in the absence of the C-terminal domain. Anti-PrP antibodies targeting epitopes in the C-terminal domain induce currents, and cause degeneration of dendrites on murine hippocampal neurons, effects that entirely dependent on the effector function of the N-terminus. NMR experiments demonstrate intramolecular docking between N- and C-terminal domains of PrPC, revealing a novel auto-inhibitory mechanism that regulates the functional activity of PrPC.



1993 ◽  
Vol 13 (4) ◽  
pp. 2420-2431
Author(s):  
D C Huang ◽  
C J Marshall ◽  
J F Hancock

Although p21ras is localized to the plasma membrane, proteins it interacts with, such as the GTPase-activating proteins (GAPs) ras GAP and neurofibromin (NF1), are not, suggesting that one function of p21ras GTP may be to target such proteins to the plasma membrane. To investigate the effects of targeting ras GAP to the plasma membrane, ras C-terminal motifs sufficient for plasma membrane localization of p21ras were cloned onto the C terminus of ras GAP. Plasma membrane-targeted ras GAP is growth inhibitory to NIH 3T3 fibroblasts and COS cells. This growth inhibition correlates with GAP catalytic activity, since the plasma membrane-targeted C-terminal catalytic domain or the GAP-related domain of neurofibromin is inhibitory, whereas the similarly targeted N-terminal domain is not. Moreover, the inhibition is abrogated by the inactivating mutation L902I, which abolishes ras GAP catalytic activity. Coexpression of oncogenic mutant ras rescues cell viability, but the majority of rescued colonies are phenotypically untransformed. Furthermore, in focus assays, targeted ras GAP suppresses transformation by oncogenic mutant ras, and in reversion assays, targeted ras GAP can revert cells transformed by oncogenic mutant ras. Neither the targeted or nontargeted N-terminal domain nor the L902I mutant of ras GAP has any transforming activity. These data demonstrate that ras GAP can function as a negative regulator of ras and that plasma membrane localization potentiates this activity. However, if ras GAP is involved in the effector functions of p21ras, it can only be part of the effector complex for cell transformation.



Sign in / Sign up

Export Citation Format

Share Document