scholarly journals Modular Organization of the Phd Repressor/Antitoxin Protein

2004 ◽  
Vol 186 (9) ◽  
pp. 2692-2698 ◽  
Author(s):  
Jeremy Allen Smith ◽  
Roy David Magnuson

ABSTRACT The P1 plasmid addiction operon is a compact genetic structure consisting of promoter, operator, antitoxin gene (phd), and toxin gene (doc). The 73-amino-acid antitoxin protein, Phd, has two distinct functions: it represses transcription (by binding to its operator) and it prevents host death (by binding and neutralizing the toxin). Here, we show that the N terminus of Phd is required for repressor but not antitoxin activity. Conversely, the C terminus is required for antitoxin but not repressor activity. Only a quarter of the protein, the resolution limit of this analysis, was required for both activities. We suggest that the plasmid addiction operon is a composite of two evolutionarily separable modules, an operator-repressor module and an antitoxin-toxin module. Consideration of similar antitoxin proteins and their surroundings indicates that modular exchange may contribute to antitoxin and operon diversity.

2005 ◽  
Vol 187 (2) ◽  
pp. 765-770 ◽  
Author(s):  
James Estle McKinley ◽  
Roy David Magnuson

ABSTRACT The P1 plasmid addiction operon (a classic toxin-antitoxin system) encodes Phd, an unstable 73-amino-acid repressor-antitoxin protein, and Doc, a stable toxin. It was previously shown by deletion analysis that the N terminus of Phd was required for repressor activity and that the C terminus was required for antitoxin activity. Since only a quarter of the protein or less was required for both activities, it was hypothesized that Phd might have a modular organization. To further test the modular hypothesis, we constructed and characterized a set of 30 point mutations in the third and fourth quarters of Phd. Four mutations (PhdA36H, V37A, I38A, and F44A) had major defects in repressor activity. Five mutations (PhdD53A, D53R, E55A, F56A, and F60A) had major defects in antitoxin activity. As predicted by the modular hypothesis, point mutations affecting each activity belonged to disjoint, rather than overlapping, sets and were separated rather than interspersed within the linear sequence. A final deletion experiment demonstrated that the C-terminal 24 amino acid residues of Phd (preceded by a methionine) retained full antitoxin activity.


2019 ◽  
Author(s):  
Ana M. Oliveira Paiva ◽  
Leen de Jong ◽  
Annemieke H. Friggen ◽  
Wiep Klaas Smits ◽  
Jeroen Corver

AbstractClostridioides difficile is an anaerobic gram-positive bacterium that can can produce the large clostridial toxins, Toxin A and Toxin B, encoded within the pathogenicity locus (PaLoc). The PaLoc also encodes the sigma factor TcdR, that positively regulates toxin gene expression, and TcdC, a putative negative regulator of toxin expression. TcdC is proposed to be an anti-sigma factor, however, several studies failed to show an association between tcdC genotype and toxin production. Consequently, TcdC function is not yet fully understood. Previous studies have characterized TcdC as a membrane-associated protein with the ability to bind G-quadruplex structures. The binding to the DNA secondary structures is mediated through the OB-fold domain present at the C-terminus of the protein. This domain was previously also proposed to be responsible for the inhibitory effect on toxin gene expression, implicating a cytoplasmic localization of the C-terminal OB-fold.In this study we aimed to obtain topological information on the C-terminus of TcdC. Using Scanning Cysteine Accessibility Mutagenesis and a HiBiT-based system, we demonstrate that the C-terminus of TcdC is located extracellularly. The extracellular location of TcdC is not compatible with direct binding of the OB-fold domain to intracellular nucleic acid or protein targets, and suggests a mechanism of action that is different from characterized anti-sigma factors.ImportanceTranscription of the C. difficile large clostrididial toxins (TcdA and TcdB) is directed by the sigma factor TcdR. TcdC has been implicated as a negative regulator, possible acting as an anti-sigma factor.Activity of TcdC has been mapped to its C-terminal OB fold domain. TcdC is anchored in the bacterial membrane, through its hydrophobic N-terminus and acting as an anti-sigma factor would require cytoplasmic localization of the C-terminal domain.Remarkably, topology predictions for TcdC suggest the N-terminus to be membrane localized and the C-terminal domain to be located extracellularly. Using independent assays, we show that the C-terminus of TcdC indeed is located in the extracellular environment, which is incompatible with its proposed role as anti-sigma factor in toxin regulation.


2002 ◽  
Vol 184 (8) ◽  
pp. 2225-2234 ◽  
Author(s):  
Jason P. Folster ◽  
Terry D. Connell

ABSTRACT ChiA, an 88-kDa endochitinase encoded by the chiA gene of the gram-negative enteropathogen Vibrio cholerae, is secreted via the eps-encoded main terminal branch of the general secretory pathway (GSP), a mechanism which also transports cholera toxin. To localize the extracellular transport signal of ChiA that initiates transport of the protein through the GSP, a chimera comprised of ChiA fused at the N terminus with the maltose-binding protein (MalE) of Escherichia coli and fused at the C terminus with a 13-amino-acid epitope tag (E-tag) was expressed in strain 569B(chiA::Kanr), a chiA-deficient but secretion-competent mutant of V. cholerae. Fractionation studies revealed that blockage of the natural N terminus and C terminus of ChiA did not prevent secretion of the MalE-ChiA-E-tag chimera. To locate the amino acid sequences which encoded the transport signal, a series of truncations of ChiA were engineered. Secretion of the mutant polypeptides was curtailed only when ChiA was deleted from the N terminus beyond amino acid position 75 or from the C terminus beyond amino acid 555. A mutant ChiA comprised of only those amino acids was secreted by wild-type V. cholerae but not by an epsD mutant, establishing that amino acids 75 to 555 independently harbored sufficient structural information to promote secretion by the GSP of V. cholerae. Cys77 and Cys537, two cysteines located just within the termini of ChiA(75-555), were not required for secretion, indicating that those residues were not essential for maintaining the functional activity of the ChiA extracellular transport signal.


1999 ◽  
Vol 342 (1) ◽  
pp. 7-12 ◽  
Author(s):  
Simon DOWLER ◽  
Richard A. CURRIE ◽  
C. Peter DOWNES ◽  
Dario R. ALESSI

We have identified a novel 280 amino acid protein which contains a putative myristoylation site at its N-terminus followed by an Src homology (SH2) domain and a pleckstrin homology (PH) domain at its C-terminus. It has been termed dual adaptor for phosphotyrosine and 3-phosphoinositides (DAPP1). DAPP1 is widely expressed and exhibits high-affinity interactions with PtdIns(3,4,5)P3 and PtdIns(3,4)P2, but not with other phospholipids tested. These observations predict that DAPP1 will interact with both tyrosine phosphorylated proteins and 3-phosphoinositides and may therefore play a role in regulating the location and/or activity of such proteins(s) in response to agonists that elevate PtdIns(3,4,5)P3 and PtdIns(3,4)P2.


2010 ◽  
Vol 432 (3) ◽  
pp. 557-566 ◽  
Author(s):  
Emily R. Slepkov ◽  
Alan Pavinski Bitar ◽  
Hélène Marquis

The intracellular bacterial pathogen Listeria monocytogenes secretes a broad-range phospholipase C enzyme called PC-PLC (phosphatidylcholine phospholipase C) whose compartmentalization and enzymatic activity is regulated by a 24-amino-acid propeptide (Cys28–Ser51). During intracytosolic multiplication, bacteria accumulate the proform of PC-PLC at their membrane–cell-wall interface, whereas during cell-to-cell spread vacuolar acidification leads to maturation and rapid translocation of PC-PLC across the cell wall in a manner that is dependent on Mpl, the metalloprotease of Listeria. In the present study, we generated a series of propeptide mutants to determine the minimal requirement to prevent PC-PLC enzymatic activity and to identify residues regulating compartmentalization and maturation. We found that a single residue at position P1 (Ser51) of the cleavage site is sufficient to prevent enzymatic activity, which is consistent with P1′ (Trp52) being located within the active-site pocket. We observed that mutants with deletions at the N-terminus, but not the C-terminus, of the propeptide are translocated across the cell wall more effectively than wild-type PC-PLC at a physiological pH, and that individual amino acid residues within the N-terminus influence Mpl-mediated maturation of PC-PLC at acidic pH. However, deletion of more than 75% of the propeptide was required to completely prevent Mpl-mediated maturation of PC-PLC. These results indicate that the N-terminus of the propeptide regulates PC-PLC compartmentalization and that specific residues within the N-terminus influence the ability of Mpl to mediate PC-PLC maturation, although a six-residue propeptide is sufficient for Mpl to mediate PC-PLC maturation.


2002 ◽  
Vol 366 (3) ◽  
pp. 863-872 ◽  
Author(s):  
Bouchaib BAHBOUHI ◽  
Nathalie CHAZAL ◽  
Nabil Georges SEIDAH ◽  
Cristina CHIVA ◽  
Marcelo KOGAN ◽  
...  

The aim of the present study was to evaluate the capacity of synthetic l- and d-peptides encompassing the HIV-1BRU gp160 REKR cleavage site to interfere with HIV and simian immuno-deficiency virus (SIV) replication and maturation of the envelope glycoprotein (Env) precursors. To facilitate their penetration into cells, a decanoyl (dec) group was added at the N-terminus. The sequences synthesized included dec5d or dec5l (decREKRV), dec9d or dec9l (decRVVQREKRV) and dec14d or dec14l (TKAKRRVVQREKRV). The peptide dec14d was also prepared with a chloromethane (cmk) group as C-terminus. Because l-peptides exhibit significant cytotoxicity starting at 35μM, further characterization was conducted mostly with d-peptides, which exhibited no cytotoxicity at concentrations higher than 70μM. The data show that only dec14d and dec14dcmk could inhibit HIV-1BRU, HIV-2ROD and SIVmac251 replication and their syncytium-inducing capacities. Whereas peptides dec5d and dec9d were inactive, dec14dcmk was at least twice as active as peptide dec14d. At the molecular level, our data show a direct correlation between anti-viral activity and the ability of the peptides to interfere with maturation of the Env precursors. Furthermore, we show that when tested in vitro the dec14d peptide inhibited PC7 with an inhibition constant Ki = 4.6μM, whereas the peptide dec14l preferentially inhibited furin with a Ki = 28μM. The fact that PC7 and furin are the major prohormone convertases reported to be expressed in T4 lymphocytes, the principal cell targets of HIV, suggests that they are involved in the maturation of HIV and SIV Env precursors.


Author(s):  
Mohammad Iskandar Jumat ◽  
Kenneth Francis Rodrigues ◽  
Azlyna Laribe ◽  
Rashidah Mohammad ◽  
Timothy William ◽  
...  

Leptospirosis is a zoonotic disease caused by the pathogenic species of Leptospira. The initial symptoms include fever, myalgia, nausea, skin rash, chills, and headache, which can be misdiagnosed. LipL32 is the highly conserved and abundant outer membrane protein (OMP) of Leptospira, which is used as an antigen in serodiagnostic assays. We used three in silico methods to predict the immunodominant regions in the full-length LipL32 protein. We identified three regions, namely the N-terminus (NrLipL32, amino acid sequence 20th-120th), intermediate (amino acid sequence 120th-150th), and C-terminus (CrLipL32, amino acid sequence 160th-260th) regions. The full-length protein and two larger fragments were cloned into the pET22b plasmid and expressed in Escherichia coli BL21 (DE3). The purified proteins were used as antigens in an ELISA to detect Leptospira-specific antibodies. The CrLipL32 ELISA showed the highest sensitivity for IgM (73.3%) and IgG (65%), followed by the full-length rLipL32 ELISA (IgM 68% and IgG 60%). The full-length rLipL32 ELISA showed high specificity (IgM 85% and IgG 75%), followed by the NrLipL32 ELISA (IgM 75% and IgG 60%). The intermediate fragment showed very low sensitivity (IgM 17% and IgG 2%). The sensitivity of the rLipL32 ELISA could be enhanced by adding other OMPs of Leptospira.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1468-1468 ◽  
Author(s):  
Monika J. Stankiewicz ◽  
Jian Du ◽  
Steven J. Ackerman

Abstract The CCAAT/enhancer binding protein epsilon (C/EBPε) is critical for the terminal differentiation and lineage-specific gene expression of granulocytes, and expression of C/EBPε32 and its shorter 27 kD and 14 kD isoforms is developmentally regulated during neutrophil granulocyte differentiation. We have defined a novel role for the unique 27 kD isoform (C/EBPε27) as a potent antagonist of GATA-1-mediated transactivation of the promoter of the gene encoding the eosinophil secondary granule protein, major basic protein (MBP) (Du et al, J. Biol. Chem.2002; 277:43481–43394). We also showed that these two transcription factors physically interact in eosinophil cell lines in vivo. In the present studies, we performed the first structure-function analyses of the C/EBPε27 isoform to map its potent repressor domains, with comparisons to the C/EBPε32 and C/EBPε14 isoforms, using transactivation assays of the MBP P2 promoter in the presence of GATA-1. Our results show that the repression of GATA-1 is mediated in part by the unique N-terminus of C/EBPε27 (not shared with other C/EBPε isoforms) in combination with part of a previously identified RDI domain (shared with full length C/EBPε32). We show further that this repressor activity is independent of DNA binding (via deletion of the basic region of C/EBPε27) as well as of sumoylation of the RDI “VKEEP” sumoylation consensus site present in both the C/EBPε32 and C/EBPε27 isoforms, and conserved in the C/EBPε proteins of many other species. Thus, our findings identify the unique N-terminus of the C/EBPε27 isoform, a distinct 68 amino acid sequence not shared with any other C/EBPε isoforms or other C/EBP family members, as the minimum repressor domain required for potent antagonism of GATA-1 activity. Of interest, fusion of this novel 68 amino acid sequence to the N-terminus of full length C/EBPε32 converted it into a partial repressor of GATA-1, but did not alter the transactivation potential of the C/EBPε32 isoform itself. The mechanism for maximal C/EBPε27 attenuation of GATA-1 activity requires a combination of both GATA-1-C/EBPε27 protein-protein interaction and C/EBPε27 binding to the proximal C/EBP consensus site immediately upstream in the target promoter. Neither C/EBPε32 nor C/EBPε14 inhibited C/EBPε27 antagonism of GATA-1, supporting a protein-protein interaction mechanism for its repressor activity that is enhanced by, but does not require, DNA binding to a proximal C/EBP site. Expression of the C/EBPε27 isoform likely serves to titrate and/or turn off expression of secondary granule protein genes such as MBP during eosinophil terminal differentiation, when these genes are ultimately silenced in the mature cell. These studies illustrate the unique regulatory (activating versus repressor) activities for the various C/EBPε isoforms, activities consistent with their developmentally regulated expression and lineage-specific activities during granulocyte (both neutrophil and eosinophil) differentiation.


1967 ◽  
Vol 45 (8) ◽  
pp. 1225-1231 ◽  
Author(s):  
A. J. Finlayson

The changes in the amino acid composition of the two aqueous ammonia soluble proteins from rapeseed (Brassica napus L.) have been studied from the time that the seed contains a small amount of protein nitrogen until it is mature. Amino acid analyses and N-terminal amino acid analyses indicated that protein synthesis proceeds from the N-terminus of the protein towards the C-terminus. Although the results of the analyses cannot be interpreted unequivocally, they ruled out the possibility that the storage protein is synthesized by the condensation of similar polypeptide subunits.


1980 ◽  
Vol 189 (3) ◽  
pp. 501-506 ◽  
Author(s):  
J F W Deakin ◽  
J O Doströvsky ◽  
D G Smyth

Removal of one, two and four amino-acid residues from the C-terminus of beta-endorphin (‘lipotropin C-Fragment’, lipotropin residues 61–91) led to the formation of peptides with progressively decreased analgesic potency; there was no change in the persistence of the analgesic effects. The four C-terminal residues are thus important for the activity of beta-endorphin, but not for the duration of action. Removal of eight amino-acid residues from the N-terminus provided a peptide that had no specific affinity for brain opiate receptors in vitro and was devoid of analgesic properties. The N-terminal sequence of beta-endorphin is therefore necessary for the production of analgesia, whereas the C-terminal residues confer potency. The N alpha-acetyl form of beta-endorphin had no specific affinity for brain opiate receptors in vitro and possessed no significant analgesic properties. Since lipotropin C'-Fragment (lipotropin residues 61–87) and the N alpha-acetyl derivative of beta-endorphin occur naturally in brain and pituitary and are only weakly active or inactive as opiates, it is suggested that proteolysis at the C-terminus and acetylation of the N-terminus of beta-endorphin may constitute physiological mechanisms for inactivation of this potent analgesic peptide.


Sign in / Sign up

Export Citation Format

Share Document