scholarly journals Dynamics in Fip1 regulate eukaryotic mRNA 3′ end processing

2021 ◽  
Author(s):  
Ananthanarayanan Kumar ◽  
Conny W.H. Yu ◽  
Juan B. Rodríguez-Molina ◽  
Xiao-Han Li ◽  
Stefan M.V. Freund ◽  
...  

Cleavage and polyadenylation factor (CPF/CPSF) is a multiprotein complex essential for mRNA 3′ end processing in eukaryotes. It contains an endonuclease that cleaves pre-mRNAs, and a polymerase that adds a poly(A) tail onto the cleaved 3′ end. Several CPF subunits, including Fip1, contain intrinsically disordered regions (IDRs). IDRs within multiprotein complexes can be flexible, or can become ordered upon interaction with binding partners. Here, we show that yeast Fip1 anchors the poly(A) polymerase Pap1 onto CPF via an interaction with zinc finger 4 of another CPF subunit, Yth1. We also reconstitute a fully recombinant 850-kDa CPF. By incorporating selectively labeled Fip1 into recombinant CPF, we could study the dynamics of Fip1 within the megadalton complex using nuclear magnetic resonance (NMR) spectroscopy. This reveals that a Fip1 IDR that connects the Yth1- and Pap1-binding sites remains highly dynamic within CPF. Together, our data suggest that Fip1 dynamics within the 3′ end processing machinery are required to coordinate cleavage and polyadenylation.

2021 ◽  
Author(s):  
Ananthanarayanan Kumar ◽  
Conny WH Yu ◽  
Juan B Rodríguez-Molina ◽  
Xiao-Han Li ◽  
Stefan MV Freund ◽  
...  

Cleavage and polyadenylation factor (CPF/CPSF) is a multiprotein complex essential for mRNA 3ʹ-end processing in eukaryotes. It contains an endonuclease that cleaves pre-mRNAs, and a polymerase that adds a poly(A) tail onto the cleaved 3ʹ-end. Several CPF subunits, including Fip1, contain intrinsically-disordered regions (IDRs). IDRs within multiprotein complexes can be flexible, or can become ordered upon interaction with binding partners. Here, we show that yeast Fip1 anchors the poly(A) polymerase Pap1 onto CPF via an interaction with zinc finger 4 of another CPF subunit, Yth1. We also reconstitute a fully recombinant 850-kDa CPF. By incorporating selectively-labelled Fip1 into recombinant CPF, we could study the dynamics of this single protein within the megadalton complex using nuclear magnetic resonance spectroscopy (NMR). This reveals that a Fip1 IDR that connects the Yth1- and Pap1-binding sites remains highly dynamic within CPF. Together, our data suggest that Fip1 dynamics mediate conformational transitions within the 3ʹ-end processing machinery to coordinate cleavage and polyadenylation.


2015 ◽  
Vol 12 (2) ◽  
pp. 13
Author(s):  
Muhamad Faridz Osman ◽  
Karimah Kassim

The coordination complexes of Co(II) and Zn(II) with Schiff bases derived from o-phenylenediamine and substituted 2-hydroxybenzaldehyde were prepared All compounds were characterized by Fourier transform infrared (FTIR) spectroscopy and Nuclear magnetic resonance (NMR) spectroscopy elemental analyzers. They were analyzed using impedance spectroscopy in the frequency range of 100Hz-1 MHz. LI and L2 showed higher conductivity compared to their metal complexes, which had values of 1.3 7 x 10-7 and 6.13 x 10-8 S/cm respectively. 


This book presents a critical assessment of progress on the use of nuclear magnetic resonance spectroscopy to determine the structure of proteins, including brief reviews of the history of the field along with coverage of current clinical and in vivo applications. The book, in honor of Oleg Jardetsky, one of the pioneers of the field, is edited by two of the most highly respected investigators using NMR, and features contributions by most of the leading workers in the field. It will be valued as a landmark publication that presents the state-of-the-art perspectives regarding one of today's most important technologies.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1472
Author(s):  
Nicola Cavallini ◽  
Francesco Savorani ◽  
Rasmus Bro ◽  
Marina Cocchi

The consumers’ interest towards beer consumption has been on the rise during the past decade: new approaches and ingredients get tested, expanding the traditional recipe for brewing beer. As a consequence, the field of “beeromics” has also been constantly growing, as well as the demand for quick and exhaustive analytical methods. In this study, we propose a combination of nuclear magnetic resonance (NMR) spectroscopy and chemometrics to characterize beer. 1H-NMR spectra were collected and then analyzed using chemometric tools. An interval-based approach was applied to extract chemical features from the spectra to build a dataset of resolved relative concentrations. One aim of this work was to compare the results obtained using the full spectrum and the resolved approach: with a reasonable amount of time needed to obtain the resolved dataset, we show that the resolved information is comparable with the full spectrum information, but interpretability is greatly improved.


2018 ◽  
Vol 11 (1) ◽  
pp. 485-508 ◽  
Author(s):  
Sharon E. Ashbrook ◽  
John M. Griffin ◽  
Karen E. Johnston

The sensitivity of nuclear magnetic resonance (NMR) spectroscopy to the local atomic-scale environment offers great potential for the characterization of a diverse range of solid materials. Despite offering more information than its solution-state counterpart, solid-state NMR has not yet achieved a similar level of recognition, owing to the anisotropic interactions that broaden the spectral lines and hinder the extraction of structural information. Here, we describe the methods available to improve the resolution of solid-state NMR spectra and the continuing research in this area. We also highlight areas of exciting new and future development, including recent interest in combining experiment with theoretical calculations, the rise of a range of polarization transfer techniques that provide significant sensitivity enhancements, and the progress of in situ measurements. We demonstrate the detailed information available when studying dynamic and disordered solids and discuss the future applications of solid-state NMR spectroscopy across the chemical sciences.


Sign in / Sign up

Export Citation Format

Share Document