scholarly journals Large-Scale Comparison of Fungal Sequence Information: Mechanisms of Innovation in Neurospora crassa and Gene Loss in Saccharomyces cerevisiae

2000 ◽  
Vol 10 (4) ◽  
pp. 416-430 ◽  
Author(s):  
E. L. Braun
HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 514e-514
Author(s):  
James M. Bradeen ◽  
Philipp W. Simon

The amplified fragment length polymorphism (AFLP) is a powerful marker, allowing rapid and simultaneous evaluation of multiple potentially polymorphic sites. Although well-adapted to linkage mapping and diversity assessment, AFLPs are primarily dominant in nature. Dominance, relatively high cost, and technological difficulty limit use of AFLPs for marker-aided selection and other locus-specific applications. In carrot the Y2 locus conditions carotene accumulation in the root xylem. We identified AFLP fragments linked to the dominant Y2 allele and pursued conversion of those fragments to codominant, PCR-based forms useful for locus-specific applications. The short length of AFLPs (≈60 to 500 bp) precludes development of longer, more specific primers as in SCAR development. Instead, using sequence information from cloned AFLP fragments for primer design, regions outside of the original fragment were amplified by inverse PCR or ligation-mediated PCR, cloned, and sequenced. Differences in sequences associated with Y2 vs. y2 allowed development of simple PCR assays differentiating those alleles. PCR primers flanking an insertion associated with the recessive allele amplified differently sized products for the two Y2 alleles in one assay. This assay is rapid, technologically simple (requiring no radioactivity and little advanced training or equipment), reliable, inexpensive, and codominant. Our PCR assay has a variety of large scale, locus-specific applications including genotyping diverse carrot cultivars and wild and feral populations. Efforts are underway to improve upon conversion technology and to more extensively test the techniques we have developed.


Catalysts ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 757
Author(s):  
Huiyi Shang ◽  
Danni Yang ◽  
Dairong Qiao ◽  
Hui Xu ◽  
Yi Cao

Levan has wide applications in chemical, cosmetic, pharmaceutical and food industries. The free levansucrase is usually used in the biosynthesis of levan, but the poor reusability and low stability of free levansucrase have limited its large-scale use. To address this problem, the surface-displayed levansucrase in Saccharomyces cerevisiae were generated and evaluated in this study. The levansucrase from Zymomonas mobilis was displayed on the cell surface of Saccharomyces cerevisiae EBY100 using a various yeast surface display platform. The N-terminal fusion partner is based on a-agglutinin, and the C-terminal one is Flo1p. The yield of levan produced by these two whole-cell biocatalysts reaches 26 g/L and 34 g/L in 24 h, respectively. Meanwhile, the stability of the surface-displayed levansucrases is significantly enhanced. After six reuses, these two biocatalysts retained over 50% and 60% of their initial activities, respectively. Furthermore, the molecular weight and polydispersity test of the products suggested that the whole-cell biocatalyst of levansucrase displayed by Flo1p has more potentials in the production of levan with low molecular weight which is critical in certain applications. In conclusion, our method not only enable the possibility to reuse the enzyme, but also improves the stability of the enzyme.


1994 ◽  
Vol 269 (26) ◽  
pp. 17705-17712
Author(s):  
S.K. Mahanty ◽  
U.S. Rao ◽  
R.A. Nicholas ◽  
G.A. Scarborough

Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1422
Author(s):  
Ousama Al Shanaa ◽  
Andrey Rumyantsev ◽  
Elena Sambuk ◽  
Marina Padkina

RNA aptamers are becoming increasingly attractive due to their superior properties. This review discusses the early stages of aptamer research, the main developments in this area, and the latest technologies being developed. The review also highlights the advantages of RNA aptamers in comparison to antibodies, considering the great potential of RNA aptamers and their applications in the near future. In addition, it is shown how RNA aptamers can form endless 3-D structures, giving rise to various structural and functional possibilities. Special attention is paid to the Mango, Spinach and Broccoli fluorescent RNA aptamers, and the advantages of split RNA aptamers are discussed. The review focuses on the importance of creating a platform for the synthesis of RNA nanoparticles in vivo and examines yeast, namely Saccharomyces cerevisiae, as a potential model organism for the production of RNA nanoparticles on a large scale.


Genetics ◽  
2001 ◽  
Vol 157 (3) ◽  
pp. 1067-1075 ◽  
Author(s):  
Laura E Bean ◽  
William H Dvorachek ◽  
Edward L Braun ◽  
Allison Errett ◽  
Gregory S Saenz ◽  
...  

AbstractWe report the analysis of a 36-kbp region of the Neurospora crassa genome, which contains homologs of two closely linked stationary phase genes, SNZ1 and SNO1, from Saccharomyces cerevisiae. Homologs of SNZ1 encode extremely highly conserved proteins that have been implicated in pyridoxine (vitamin B6) metabolism in the filamentous fungi Cercospora nicotianae and in Aspergillus nidulans. In N. crassa, SNZ and SNO homologs map to the region occupied by pdx-1 (pyridoxine requiring), a gene that has been known for several decades, but which was not sequenced previously. In this study, pyridoxine-requiring mutants of N. crassa were found to possess mutations that disrupt conserved regions in either the SNZ or SNO homolog. Previously, nearly all of these mutants were classified as pdx-1. However, one mutant with a disrupted SNO homolog was at one time designated pdx-2. It now appears appropriate to reserve the pdx-1 designation for the N. crassa SNZ homolog and pdx-2 for the SNO homolog. We further report annotation of the entire 36,030-bp region, which contains at least 12 protein coding genes, supporting a previous conclusion of high gene densities (12,000-13,000 total genes) for N. crassa. Among genes in this region other than SNZ and SNO homologs, there was no evidence of shared function. Four of the genes in this region appear to have been lost from the S. cerevisiae lineage.


2002 ◽  
Vol 3 (3) ◽  
pp. 221-225

In recent months a bumper crop of genomes has been completed, including the fission yeast (Schizosaccharomyces pombe) and rice (Oryza sativa). Two large-scale studies ofSaccharomyces cerevisiaeprotein complexes provided a picture of the eukaryotic proteome as a network of complexes. Amongst the other stories of interest was a demonstration that proteomic analysis of blood samples can be used to detect ovarian cancer, perhaps even as early as stage I.


Sign in / Sign up

Export Citation Format

Share Document