scholarly journals High-resolution genome-wide in vivo footprinting of diverse transcription factors in human cells

2010 ◽  
Vol 21 (3) ◽  
pp. 456-464 ◽  
Author(s):  
A. P. Boyle ◽  
L. Song ◽  
B.-K. Lee ◽  
D. London ◽  
D. Keefe ◽  
...  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Guillaume Bordet ◽  
Niraj Lodhi ◽  
Danping Guo ◽  
Andrew Kossenkov ◽  
Alexei V. Tulin

AbstractPoly(ADP-ribose) polymerase 1 (PARP-1) is a nuclear enzyme involved in DNA repair and transcription regulation, among other processes. Malignant transformations, tumor progression, the onset of some neuropathies and other disorders have been linked to misregulation of PARP-1 activity. Despite intensive studies during the last few decades, the role of PARP-1 in transcription regulation is still not well understood. In this study, a transcriptomic analysis in Drosophila melanogaster third instar larvae was carried out. A total of 602 genes were identified, showing large-scale changes in their expression levels in the absence of PARP-1 in vivo. Among these genes, several functional gene groups were present, including transcription factors and cytochrome family members. The transcription levels of genes from the same functional group were affected by the absence of PARP-1 in a similar manner. In the absence of PARP-1, all misregulated genes coding for transcription factors were downregulated, whereas all genes coding for members of the cytochrome P450 family were upregulated. The cytochrome P450 proteins contain heme as a cofactor and are involved in oxidoreduction. Significant changes were also observed in the expression of several mobile elements in the absence of PARP-1, suggesting that PARP-1 may be involved in regulating the expression of mobile elements.


2018 ◽  
Author(s):  
Jie Zhang ◽  
Massimo Cavallaro ◽  
Daniel Hebenstreit

Transcription of many genes in metazoans is subject to polymerase pausing, which corresponds to the transient arrest of transcriptionally engaged polymerase. It occurs mainly at promoter proximal regions and is not well understood. In particular, a genome-wide measurement of pausing times at high resolution has been lacking.We present here an extension of PRO-seq, time variant PRO-seq (TV-PRO-seq), that allowed us to estimate genome-wide pausing times at single base resolution. Its application to human cells reveals that promoter proximal pausing is surprisingly short compared to other regions and displays an intricate pattern. We also find precisely conserved pausing profiles at tRNA and rRNA genes and identified DNA motifs associated with pausing time. Finally, we show how chromatin states reflect differences in pausing times.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. SCI-21-SCI-21
Author(s):  
Steven Henikoff

Abstract The protein complexes that package our genomes must be mobilized for active processes to occur, including replication and transcription, but until recently we have only had a static, low resolution view of the "epigenome". Genomes are packaged into nucleosomes, octamers of four core histones wrapped by 147 base pairs of DNA. Nucleosomes present obstacles to transcription, which over genes is the RNA Polymerase II (RNAPII) complex, and one current challenge is to understand what happens to a nucleosome when RNAPII transcribes through the DNA that it occupies. We study this process by developing methods for following nucleosomes as they are evicted and replaced. Among the factors that we have implicated in the process is torsional stress, which we can now measure genome-wide. RNAPII movement can unwrap nucleosomes and thus destabilize them, causing them to be occasionally evicted and replaced. Interestingly, we find that destabilization of nucleosomes during transcription is enhanced by anthracycline compounds, widely used chemotherapeutic drugs that intercalate between DNA base pairs, thus suggesting a new mechanism for cell killing during chemotherapy. We are also interested in what happens to RNAPII during its encounter with a nucleosomes. In vitro, RNAPII cannot transcribe completely through a nucleosome, but rather stalls as it tries to unwrap the DNA from around the core. We have been studying this process in vivo, and have developed a simple method for precisely mapping RNAPII genome-wide. We have used this method to show exactly where RNAPII stalls as it unwraps a nucleosome in vivo, surprisingly in a different place in vivo from where it stalls in vitro. We also have discovered that a variant histone, H2A.Z, which is found in essentially all eukaryotes, helps to reduce the nucleosome barrier to transcription, and in this way may modulate transcription. Other protein components of the epigenome involved in dynamic processes are nucleosome remodelers, which use the energy of ATP to slide or even evict nucleosomes from DNA. Some remodelers help RNAPII get started and others help it overcome the nucleosome barrier to transcription, and by mapping them at base-pair resolution, we can gain insight into how they act. We have also applied our high-resolution mapping tools to transcription factors, which bind DNA at specific sites to regulate transcription and other processes. Our ability to achieve high spatial and temporal resolution mapping of the binding and action of nucleosomes, transcription factors, remodelers and RNAPII provides us with a detailed picture of epigenome dynamics. By using these tools we are beginning to understand how DNA sequence and conformation are recognized for regulation of transcription and other epigenomic processes. Disclosures No relevant conflicts of interest to declare.


1996 ◽  
Vol 16 (11) ◽  
pp. 6190-6199 ◽  
Author(s):  
M D Litt ◽  
I K Hornstra ◽  
T P Yang

To investigate potential mechanisms regulating the hypoxanthine phosphoribosyltransferase (HPRT) gene by X-chromosome inactivation, we performed in vivo footprinting and high-resolution DNA methylation analysis on the 5' region of the active and inactive mouse HPRT alleles and compared these results with those from the human HPRT gene. We found multiple footprinted sites on the active mouse HPRT allele and no footprints on the inactive allele. Comparison of the footprint patterns of the mouse and human HPRT genes demonstrated that the in vivo binding of regulatory proteins between these species is generally conserved but not identical. Detailed nucleotide sequence comparison of footprinted regions in the mouse and human genes revealed a novel 9-bp sequence associated with transcription factor binding near the transcription sites of both genes, suggesting the identification of a new conserved initiator element. Ligation-mediated PCR genomic sequencing showed that all CpG dinucleotides examined on the active allele are unmethylated, while the majority of CpGs on the inactive allele are methylated and interspersed with a few hypomethylated sites. This pattern of methylation on the inactive mouse allele is notably different from the unusual methylation pattern of the inactive human gene, which exhibited strong hypomethylation specifically at GC boxes. These studies, in conjunction with other genomic sequencing studies of X-linked genes, demonstrate that (i) the active alleles are essentially unmethylated, (ii) the inactive alleles are hypermethylated, and (iii) the high-resolution methylation patterns of the hypermethylated inactive alleles are not strictly conserved. There is no obvious correlation between the pattern of methylated sites on the inactive alleles and the pattern of binding sites for transcription factors on the active alleles. These results are discussed in relationship to potential mechanisms of transcriptional regulation by X-chromosome inactivation.


2011 ◽  
Vol 22 (1) ◽  
pp. 9-24 ◽  
Author(s):  
B.-K. Lee ◽  
A. A. Bhinge ◽  
A. Battenhouse ◽  
R. M. McDaniell ◽  
Z. Liu ◽  
...  

2020 ◽  
Author(s):  
Yannick Mesrouze ◽  
Gustavo Aguilar ◽  
Fedir Bokhovchuk ◽  
Typhaine Martin ◽  
Clara Delaunay ◽  
...  

AbstractThe most downstream elements of the Hippo pathway, the TEAD transcription factors, are regulated by several cofactors, such as Vg/VGLL1-3. Earlier findings on human VGLL1 and here on human VGLL3 show that these proteins interact with TEAD via a conserved amino acid motif called the TONDU domain. Surprisingly, our studies reveal that the TEAD-binding domain of Drosophila Vg and of human VGLL2 is more complex and contains an additional structural element, an Ω-loop, that contributes to TEAD binding and in vivo function. To explain this unexpected structural difference between proteins from the same family, we propose that, after the genome-wide duplications at the origin of vertebrates, the Ω-loop present in an ancestral VGLL gene has been lost in some VGLL variants. These findings illustrate how structural and functional constraints can guide the evolution of transcriptional cofactors to preserve their ability to compete with other cofactors for binding to transcription factors.


2005 ◽  
Vol 25 (6) ◽  
pp. 2138-2146 ◽  
Author(s):  
Christine Tachibana ◽  
Jane Y. Yoo ◽  
Jean-Basco Tagne ◽  
Nataly Kacherovsky ◽  
Tong I. Lee ◽  
...  

ABSTRACT In Saccharomyces cerevisiae, glucose depletion causes a profound alteration in metabolism, mediated in part by global transcriptional changes. Many of the transcription factors that regulate these changes act combinatorially. We have analyzed combinatorial regulation by Adr1 and Cat8, two transcription factors that act during glucose depletion, by combining genome-wide expression and genome-wide binding data. We identified 32 genes that are directly activated by Adr1, 28 genes that are directly activated by Cat8, and 14 genes that are directly regulated by both. Our analysis also uncovered promoters that Adr1 binds but does not regulate and promoters that are indirectly regulated by Cat8, stressing the advantage of combining global expression and global localization analysis to find directly regulated targets. At most of the coregulated promoters, the in vivo binding of one factor is independent of the other, but Adr1 is required for optimal Cat8 binding at two promoters with a poor match to the Cat8 binding consensus. In addition, Cat8 is required for Adr1 binding at promoters where Adr1 is not required for transcription. These data provide a comprehensive analysis of the direct, indirect, and combinatorial requirements for these two global transcription factors.


Sign in / Sign up

Export Citation Format

Share Document