scholarly journals Genome-wide strand asymmetry in massively parallel reporter activity favors genic strands

2021 ◽  
Author(s):  
Brian S. Roberts ◽  
E. Christopher Partridge ◽  
Bryan A. Moyers ◽  
Vikram Agarwal ◽  
Kimberly M. Newberry ◽  
...  
2008 ◽  
Vol 40 (6) ◽  
pp. 722-729 ◽  
Author(s):  
Peter J Campbell ◽  
Philip J Stephens ◽  
Erin D Pleasance ◽  
Sarah O'Meara ◽  
Heng Li ◽  
...  

2020 ◽  
Author(s):  
Brian S. Roberts ◽  
E. Christopher Partridge ◽  
Bryan A. Moyers ◽  
Vikram Agarwal ◽  
Kimberly M. Newberry ◽  
...  

AbstractMassively parallel reporter assays (MPRAs) are useful tools to discover and characterize regulatory elements in human genomes. Partly because enhancer function is assumed to be orientation independent with respect to each strand of the DNA helix, most reported MPRA results ignore stranded information. However, we find pervasive strand asymmetry of MPRA signals in datasets from multiple reporter configurations and in both published and newly reported data. These effects are reproducible across different cell types and in different treatments within a cell type, and are observed both within and outside of annotated regulatory elements. From elements in gene bodies, MPRA strand asymmetry favors the sense strand, suggesting that biological function related to endogenous transcription is driving the phenomenon. Similarly, within Alu mobile element insertions, we find that strand asymmetry favors the transcribed strand of the ancestral retrotransposon. The effect is consistent across the multiplicity of Alu elements in human genomes, and is more pronounced in younger, less diverged Alu elements. We find sequence features driving MPRA strand asymmetry and demonstrate its prediction from sequence alone. We see some evidence for both RNA stabilization and transcriptional activation mechanisms, and hypothesize that the effect is driven by natural selection favoring efficient transcription. Our results indicate that strand asymmetry, as a pervasive and reproducible feature, should be accounted for in analysis of MRPA data. More importantly, the fact that MPRA asymmetry favors naturally transcribed strands suggests that it stems from preserved biological functions that have a substantial, global impact on gene and genome evolution.


2020 ◽  
Author(s):  
Songchang Chen ◽  
Xuyang Yin ◽  
Sijia Zhang ◽  
Jun Xia ◽  
Ping Liu ◽  
...  

Abstract STUDY QUESTION Can whole genome sequencing (WGS) offer a relatively cost-effective approach for embryonic genome-wide haplotyping and preimplantation genetic testing (PGT) for monogenic disorders (PGT-M), aneuploidy (PGT-A) and structural rearrangements (PGT-SR)? SUMMARY ANSWER Reliable genome-wide haplotyping, PGT-M, PGT-A and PGT-SR could be performed by WGS with 10× depth of parental and 4× depth of embryonic sequencing data. WHAT IS KNOWN ALREADY Reduced representation genome sequencing with a genome-wide next-generation sequencing haplarithmisis-based solution has been verified as a generic approach for automated haplotyping and comprehensive PGT. Several low-depth massively parallel sequencing (MPS)-based methods for haplotyping and comprehensive PGT have been developed. However, an additional family member, such as a sibling, or a proband, is required for PGT-M haplotyping using low-depth MPS methods. STUDY DESIGN, SIZE, DURATION In this study, 10 families that had undergone traditional IVF-PGT and 53 embryos, including 13 embryos from two PGT-SR families and 40 embryos from eight PGT-M families, were included to evaluate a WGS-based method. There were 24 blastomeres and 29 blastocysts in total. All embryos were used for PGT-A. Karyomapping validated the WGS results. Clinical outcomes of the 10 families were evaluated. PARTICIPANTS/MATERIALS, SETTING, METHODS A blastomere or a few trophectoderm cells from the blastocyst were biopsied, and multiple displacement amplification (MDA) was performed. MDA DNA and bulk DNA of family members were used for library construction. Libraries were sequenced, and data analysis, including haplotype inheritance deduction for PGT-M and PGT-SR and read-count analysis for PGT-A, was performed using an in-house pipeline. Haplotyping with a proband and parent-only haplotyping without additional family members were performed to assess the WGS methodology. Concordance analysis between the WGS results and traditional PGT methods was performed. MAIN RESULTS AND THE ROLE OF CHANCE For the 40 PGT-M and 53 PGT-A embryos, 100% concordance between the WGS and single-nucleotide polymorphism (SNP)-array results was observed, regardless of whether additional family members or a proband was included for PGT-M haplotyping. For the 13 embryos from the two PGT-SR families, the embryonic balanced translocation was detected and 100% concordance between WGS and MicroSeq with PCR-seq was demonstrated. LIMITATIONS, REASONS FOR CAUTION The number of samples in this study was limited. In some cases, the reference embryo for PGT-M or PGT-SR parent-only haplotyping was not available owing to failed direct genotyping. WIDER IMPLICATIONS OF THE FINDINGS WGS-based PGT-A, PGT-M and PGT-SR offered a comprehensive PGT approach for haplotyping without the requirement for additional family members. It provided an improved complementary method to PGT methodologies, such as low-depth MPS- and SNP array-based methods. STUDY FUNDING/COMPETING INTEREST(S) This research was supported by the research grant from the National Key R&D Program of China (2018YFC0910201 and 2018YFC1004900), the Guangdong province science and technology project of China (2019B020226001), the Shenzhen Birth Defect Screening Project Lab (JZF No. [2016] 750) and the Shenzhen Municipal Government of China (JCYJ20170412152854656). This work was also supported by the National Natural Science Foundation of China (81771638, 81901495 and 81971344), the National Key R&D Program of China (2018YFC1004901 and 2016YFC0905103), the Shanghai Sailing Program (18YF1424800), the Shanghai Municipal Commission of Science and Technology Program (15411964000) and the Shanghai ‘Rising Stars of Medical Talent’ Youth Development Program Clinical Laboratory Practitioners Program (201972). The authors declare no competing interests. TRIAL REGISTRATION NUMBER N/A.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 591-591 ◽  
Author(s):  
Fabienne Brenet ◽  
Michelle Moh ◽  
Patricia Funk ◽  
Daoqui You ◽  
Agnes J. Viale ◽  
...  

Abstract Abstract 591 The human genome is adorned with methylated cytosine residues that function in the epigenetic guidance of cellular differentiation and development. Cellular interpretation of this epigenetic mark is incompletely understood and tissue specific patterns of DNA methylation vary with age, can be altered by environmental factors, and are often abnormal in human disease. Aberrant DNA methylation is a common means by which tumor suppressor genes (TSGs) are inactivated during carcinogenesis (Baylin, Herman, Graff, Vertino and Issa 1998; Laird and Jaenisch 1996; Singal and Ginder 1999). Unlike genetic mechanisms of gene inactivation, such as gene deletion and mutation, the epigenetic silencing of TSGs by promoter hypermethylation is potentially reversible. This has led to the broad interest of cancer biologists in the study of DNA methylation. Method: We developed a method for genome-wide analysis of DNA methylation by using a recombinant protein containing a methyl-CpG binding domain (MBD) to enrich methylated DNA fragments that are then identified by massively parallel sequencing using the SOLiD sequencer (ABI). We generated ∼15-million sequence tags per specimen and wrote custom R-language algorithms to develop an analytical platform with which to study DNA methylation. We used this technology to study the pharmacodynamics of DNA methylation in acute myelogenous leukemia (AML) cells following exposure to the hypomethylating agent, 5-aza-2'-deoxycytidine (decitabine). We compared DNA methylation patterns before and after decitabine treatment with transcriptional activity revealed by microarrays (Illumina) and quantitative PCR. We found that Sequence Tag Analysis of Methylation Profiles (STAMP) permits highly reproducible, genome-wide identification of DNA methylation density at near base-pair resolution. This method is cost effective and can be extended, without modification, to any mapped genome. Results: STAMP analysis revealed patterned DNA methylation at all scales across the genome: from whole chromosomes to individual genes. We found that densely methylated elements (DMEs) of the human genome are often highly conserved or closely associated with gene coding regions and promoters. We identified distinct patterns of DNA methylation surrounding the transcription start and termination sites of all genes. These methylation patterns are associated with transcriptional activity of neighboring genes. Interestingly, genes with a densely methylated transcription start site (TSS) have little methylation in the surrounding regions whereas genes with little or no methylation at the TSS have disproportionately higher methylation within their gene bodies. In untreated cells, we detected ∼75,000 DMEs (false discovery rate <0.01) with a median length ∼600 bp and with 75% being less than 960bp. The longest DMEs extend up to ∼24000 bp and are composed of microsatellite clusters. The majority of the DMEs are not classic CpG islands (CGI) but are GC-rich regions (median 57% GC) with a greater than expected incidence of CpG dinucleotides (median CpG observed/expected 0.49): results that suggest the definition of a CGI excludes the majority of the methylated human genome. Although the pattern of DNA methylation was qualitatively similar in cells treated with decitabine, we found that the density of methylation was generally lower and fewer DMEs (∼50,000) were identified. Decitabine treatment led to increased expression of ∼800 genes involved in cell cycle control, apoptosis and cellular differentiation whereas the ∼50 genes with downregulated expression were most commonly involved in RNA metabolism. Distinct pre-treatment DNA methylation patterns were associated with, and tended to predict, the transcriptional activity following treatment with decitabine. Summary: We developed and utilized a powerful new technology to uncover the genome-wide effects of decitabine on DNA methylation patterns in AML. We found that although decitabine induces genome-wide DNA hypomethylation, its effect on transcription depends upon the pattern of DNA methylation prior to treatment. The STAMP methodology leverages the power and flexibility of massively parallel sequencing with the high selectivity of the MBD for its natural ligand, methyl-CpG. This assay permits robust, unbiased and highly sensitive whole-genome identification of methylated DNA segments. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3385-3385
Author(s):  
Laurie A Steiner ◽  
Vincent Schulz ◽  
Yelena Maksimova ◽  
Nancy E Seidel ◽  
David M. Bodine ◽  
...  

Abstract Abstract 3385 Barrier insulators function to actively maintain the boundaries between heterochromatin and euchromatin. They are critical for regulation of cell-type specific gene expression in normal development and differentiation. Mutations that disrupt barrier insulator function have been associated with developmental disorders, malignancies, and inherited hemolytic anemias. Barrier insulators are poorly understood in mammalian cells, with much of the available data coming from model organisms. In vertebrates, the best characterized barrier insulator is the 5' hypersensitive site in the LCR of the chicken β-globin gene cluster (cHS4). In cHS4, barrier insulator function is mediated by binding of the upstream stimulatory factor (USF) proteins, which bind specific DNA sequences and recruit multiple regulatory proteins, including histone aceytltranserases (HATs) and histone methyltransferases (MTs), which maintain DNA in a euchromatin state. The cHS4 barrier also recruits the protein VEZF1, recently shown to mediate protection of DNA from methylation. We hypothesize that there is a common regulatory signature for cell-type specific barrier insulators characterized by binding of the USF proteins, with recruitment of HATs, MTs, and other proteins in the genome of human erythroid cells. To test this hypothesis, we utilized chromatin immunoprecipitation coupled with massively parallel sequencing (ChIP-seq) to generate genome-wide maps of barrier-associated proteins and histone modifications in primary human erythroid cells (R3/R4 stage). Regions where barrier-associated proteins co-localize, representing potential barrier insulators, were identified then subjected to functional analysis in position effect variegation (PEV) assays. Genome-wide, 3825 sites bound the USF proteins USF1 and USF2 with their associated MTs (PRMT1/PRMT4), and HATs (P300, PCAF, SRC1). The genome-wide binding of VEZF1 was compared to the binding of the USFs, MTs, and HATs. VEZF1 bound 1129 (30%) of the potential barrier sites. The role of CTCF in barrier insulators is controversial. It is dispensable for cHS4 barrier function in chicken erythroid cells, but in human cells, it marks chromatin boundaries in a cell-type specific manner. CTCF ChIP-seq in erythroid cells revealed that a very large number of the barrier-associated sites (3382, 88%) bound CTCF. Together, 1167 sites bound all 9 factors. These sites were located primarily in gene promoters (42%) and 5' untranslated regions (23%), consistent with data from Drosophila, where barriers are frequently associated with gene promoters. Active barriers are associated with an “open” chromatin structure and lack CpG methylation, thus these epigenetic marks were assessed at the predicted barrier sites. The majority of sites, 96%, had the active histone mark H3K4me2, while only 0.02% were positive for the repressive histone mark H3K27me3. To assess CpG methylation, methyl binding domain pull down was coupled with massively parallel sequencing (MethylSeq). 3676 regions of CpG methylation were identified, but none overlapped with the barrier signature. PEV assays, which assesses the ability of a region of DNA to protect a reporter gene from heterochromatin-mediated silencing, were used to determine if selected sites identified by ChIP-seq studies had barrier insulator function in vivo. Constructs containing an EF1alpha promoter directing an EGFP reporter gene-IRES-hygromycin cassette were flanked by potential barriers and stably transfected into K562 cells. Results from single copy clones were normalized to the cHS4 positive control. Sites tested included an intergenic site on chromosome 11 located >100kb from any known gene (site 1), which bound the USFs, PRMTs, PCAF, SRC1, and CTCF, and a site in intron 1 of the band 3 gene (site 2), which bound the USFs, PRMT4, P300, PCAF, and SRC1. Both sites were shown to have barrier activity (site 1 x2= 6.77, p<0.01 and site 2 x2= 3.30, p<0.06), demonstrating that our molecular signature can predict functional barrier insulators. The orientation dependence of vertebrate barrier elements has never been described. When site 1 and 2 were analyzed in the opposite orientation relative to the direction of transcription, neither had barrier function. Unbiased identification of barrier insulators on a genome wide scale will provide novel insights into normal erythropoiesis and its perturbation in human disease. Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Vol 93 (16) ◽  
Author(s):  
Chong Wang ◽  
Sizun Jiang ◽  
Luyao Zhang ◽  
Difei Li ◽  
Jun Liang ◽  
...  

ABSTRACTSuper-enhancers (SEs) are clusters of enhancers marked by extraordinarily high and broad chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) signals for H3K27ac or other transcription factors (TFs). SEs play pivotal roles in development and oncogenesis. Epstein-Barr virus (EBV) super-enhancers (ESEs) are co-occupied by all essential EBV oncogenes and EBV-activated NF-κB subunits. Perturbation of ESEs stops lymphoblastoid cell line (LCL) growth. To further characterize ESEs and identify proteins critical for ESE function, MYC ESEs were cloned upstream of a green fluorescent protein (GFP) reporter. Reporters driven by MYC ESEs 525 kb and 428 kb upstream of MYC (525ESE and 428ESE) had very high activities in LCLs but not in EBV-negative BJAB cells. EBNA2 activated MYC ESE-driven luciferase reporters. CRISPRi targeting 525ESE significantly decreased MYC expression. Genome-wide CRISPR screens identified factors essential for ESE activity. TBP-associated factor (TAF) family proteins, including TAF8, TAF11, and TAF3, were essential for the activity of the integrated 525ESE-driven reporter in LCLs. TAF8 and TAF11 knockout significantly decreased 525ESE activity and MYC transcription. MEF2C was also identified to be essential for 525ESE activity. Depletion of MEF2C decreased 525ESE reporter activity, MYC expression, and LCL growth. MEF2C cDNA resistant to CRIPSR cutting rescued MEF2C knockout and restored 525ESE reporter activity and MYC expression. MEF2C depletion decreased IRF4, EBNA2, and SPI1 binding to 525ESE in LCLs. MEF2C depletion also affected the expression of other ESE target genes, including the ETS1 and BCL2 genes. These data indicated that in addition to EBNA2, TAF family members and MEF2C are essential for ESE activity, MYC expression, and LCL growth.IMPORTANCESEs play critical roles in cancer development. Since SEs assemble much bigger protein complexes on enhancers than typical enhancers (TEs), they are more sensitive than TEs to perturbations. Understanding the protein composition of SEs that are linked to key oncogenes may identify novel therapeutic targets. A genome-wide CRISPR screen specifically identified proteins essential for MYC ESE activity but not simian virus 40 (SV40) enhancer. These proteins not only were essential for the reporter activity but also were also important for MYC expression and LCL growth. Targeting these proteins may lead to new therapies for EBV-associated cancers.


Sign in / Sign up

Export Citation Format

Share Document