scholarly journals The origin and evolution of human ampliconic gene families and ampliconic structure

2007 ◽  
Vol 17 (4) ◽  
pp. 441-450 ◽  
Author(s):  
B. K. Bhowmick ◽  
Y. Satta ◽  
N. Takahata
2019 ◽  
Author(s):  
Mosè Manni ◽  
Felipe A. Simao ◽  
Hugh M. Robertson ◽  
Marco A. Gabaglio ◽  
Robert M. Waterhouse ◽  
...  

AbstractThe dipluran two-pronged bristletail Campodea augens is a blind ancestrally wingless hexapod with the remarkable capacity to regenerate lost body appendages such as its long antennae. As sister group to Insecta (sensu stricto), Diplura are key to understanding the early evolution of hexapods and the origin and evolution of insects. Here we report the 1.2-Gbp draft genome of C. augens and results from comparative genomic analyses with other arthropods. In C. augens we uncovered the largest chemosensory gene repertoire of ionotropic receptors in the animal kingdom, a massive expansion which might compensate for the loss of vision. We found a paucity of photoreceptor genes mirroring at the genomic level the secondary loss of an ancestral external photoreceptor organ. Expansions of detoxification and carbohydrate metabolism gene families might reflect adaptations for foraging behaviour, and duplicated apoptotic genes might underlie its high regenerative potential.The C. augens genome represents one of the key references for studying the emergence of genomic innovations in insects, the most diverse animal group, and opens up novel opportunities to study the under-explored biology of diplurans.


2018 ◽  
Author(s):  
Juan F Ortiz ◽  
Antonis Rokas

Clusters of duplicated genes (CTDGs) are nearly ubiquitous in life's genomes, and are associated with several well-known gene families, such as olfactory receptors, zinc fingers, and immunity-related genes, as well as with several highly variable traits, including olfaction, body plan architecture, and pathogen resistance. However, these observations are usually anecdotal, restricted to specific cases, and lacking evolutionary context. In this study, we use a robust statistical approach to characterize the CTDG repertoire and analyze the distribution of CTDGs across 18 mammal genomes, including human. We found that, on average, 18% of the genes in each species are parts of CTDGs. Although genes in CTDGs are enriched for several biological processes, these tend to be involved in the interactions between the organism and its environment. We further found that mammalian CTDGs are not uniformly distributed across chromosomes and that orthologs of the human chromosome 19 are among the most clustered chromosomes in nearly all mammalian genomes analyzed. We also found evidence that the human chromosome 19 was formed by a fusion event that occurred before the diversification of the rodent and primate lineages and maintained its high density of CTDGs during its subsequent evolution. Finally, using chromosome-level alignments across mammalian genomes, we show how the syntenic regions of the human chromosome 19 have been shrinking, increasing their gene density and possibly increasing the compactness of its CTDGs. These results suggest that CTDGs are a major feature of mammalian genomes and provide novel insights into the origin and evolution of regions with unusually high densities of CTDGs.


2020 ◽  
Author(s):  
Juan C. Opazo ◽  
Kattina Zavala ◽  
Michael W. Vandewege ◽  
Federico G. Hoffmann

AbstractStudying the evolutionary history of gene families is a challenging and exciting task with a wide range of implications. In addition to exploring fundamental questions about the origin and evolution of genes, disentangling their evolution is also critical to those who do functional/structural work, as the correct interpretation of their results needs to be done in a robust evolutionary context. The sirtuin gene family is a group of genes that are involved in a variety of biological functions mostly related to aging. Their duplicative history is an open question, as well as the definition of the repertoire of sirtuin genes among vertebrates. Our goal is to take advantage of the genomic data available in public databases to advance our understanding of how sirtuin genes are related to each other, and to characterize the gene repertoire in species representative of all the main groups of vertebrates. Our results show a well-resolved phylogeny that represents a significant improvement in our understanding of the duplicative history of the sirtuin gene family. We identified a new sirtuin family member (SIRT3-like) that was apparently lost in amniotes, but retained in all other groups of jawed vertebrates. Our results indicate that there are at least eight sirtuin paralogs among vertebrates and that all of them can be traced back to the last common ancestor of the group that existed between 676 and 615 millions of years ago.


Author(s):  
Yongbo Bao ◽  
Qifan Zeng ◽  
Jing Wang ◽  
Zelei Zhang ◽  
Yang Zhang ◽  
...  

Abstract Blood clams differ from their molluscan kins by exhibiting a unique red-blood (RB) phenotype, however the genetic basis and biochemical machinery subserving this evolutionary innovation remain unclear. As a fundamental step toward resolving this mystery, we presented the first chromosome-level genome and comprehensive transcriptomes of the blood clam Tegillarca granosa for an integrated genomic, evolutionary and functional analyses of clam RB phenotype. We identified blood clam-specific and expanded gene families, as well as gene pathways that are of RB relevant. Clam-specific RB-related hemoglobins (Hbs) showed close phylogenetic relationships with myoglobins (Mbs) of blood clam and other molluscs without the RB phenotype, indicating that clam-specific Hbs were likely evolutionarily derived from the Mb lineage. Strikingly, similar to vertebrate Hbs, blood clam Hbs were present in a form of gene cluster. Despite the convergent evolution of Hb clusters in blood clam and vertebrates, their Hb clusters may have originated from a single ancestral Mb-like gene as evidenced by gene phylogeny and synteny analysis. A full suite of enzyme-encoding genes for heme synthesis was identified in blood clam, with prominent expression in hemolymph and resembling those in vertebrates, suggesting a convergence of both RB-related Hb and heme functions in vertebrates and blood clam. RNAi experiments confirmed the functional roles of Hbs and key enzyme of heme synthesis in the maintenance of clam RB phenotype. The high-quality genome assembly and comprehensive transcriptomes presented herein serve new genomic resources for the super-diverse phylum Mollusca, and provide deep insights into the origin and evolution of invertebrate RB.


2019 ◽  
Vol 12 (1) ◽  
pp. 3534-3549
Author(s):  
Mosè Manni ◽  
Felipe A Simao ◽  
Hugh M Robertson ◽  
Marco A Gabaglio ◽  
Robert M Waterhouse ◽  
...  

Abstract The dipluran two-pronged bristletail Campodea augens is a blind ancestrally wingless hexapod with the remarkable capacity to regenerate lost body appendages such as its long antennae. As sister group to Insecta (sensu stricto), Diplura are key to understanding the early evolution of hexapods and the origin and evolution of insects. Here we report the 1.2-Gb draft genome of C. augens and results from comparative genomic analyses with other arthropods. In C. augens, we uncovered the largest chemosensory gene repertoire of ionotropic receptors in the animal kingdom, a massive expansion that might compensate for the loss of vision. We found a paucity of photoreceptor genes mirroring at the genomic level the secondary loss of an ancestral external photoreceptor organ. Expansions of detoxification and carbohydrate metabolism gene families might reflect adaptations for foraging behavior, and duplicated apoptotic genes might underlie its high regenerative potential. The C. augens genome represents one of the key references for studying the emergence of genomic innovations in insects, the most diverse animal group, and opens up novel opportunities to study the under-explored biology of diplurans.


2019 ◽  
Vol 37 (2) ◽  
pp. 379-394
Author(s):  
Aida Arcas ◽  
David G Wilkinson ◽  
M Ángela Nieto

Abstract Eph receptor (Eph) and ephrin signaling regulate fundamental developmental processes through both forward and reverse signaling triggered upon cell–cell contact. In vertebrates, they are both classified into classes A and B, and some representatives have been identified in many metazoan groups, where their expression and functions have been well studied. We have extended previous phylogenetic analyses and examined the presence of Eph and ephrins in the tree of life to determine their origin and evolution. We have found that 1) premetazoan choanoflagellates may already have rudimental Eph/ephrin signaling as they have an Eph-/ephrin-like pair and homologs of downstream-signaling genes; 2) both forward- and reverse-downstream signaling might already occur in Porifera since sponges have most genes involved in these types of signaling; 3) the nonvertebrate metazoan Eph is a type-B receptor that can bind ephrins regardless of their membrane-anchoring structure, glycosylphosphatidylinositol, or transmembrane; 4) Eph/ephrin cross-class binding is specific to Gnathostomata; and 5) kinase-dead Eph receptors can be traced back to Gnathostomata. We conclude that Eph/ephrin signaling is of older origin than previously believed. We also examined the presence of protein domains associated with functional characteristics and the appearance and conservation of downstream-signaling pathways to understand the original and derived functions of Ephs and ephrins. We find that the evolutionary history of these gene families points to an ancestral function in cell–cell interactions that could contribute to the emergence of multicellularity and, in particular, to the required segregation of cell populations.


2007 ◽  
Vol 362 (1482) ◽  
pp. 973-986 ◽  
Author(s):  
Ya-ping Zhang ◽  
Song Ge

China has a large land area with highly diverse topography, climate and vegetation, and animal resources and is ranked eighth in the world and first in the Northern Hemisphere on richness of biodiversity. Even though little work on molecular evolution had been reported a decade ago, studies on both the evolution of macromolecules and the molecular phylogeny have become active in China in recent years. This review highlights some of the interesting and important developments in molecular evolution study in China. Chinese scientists have made significant contribution on the methods inferring phylogeny and biogeography of animals and plants in East Asia using molecular data. Studies on population and conservation genetics of animals and plants, such as Golden monkey and Chinese sturgeon, provided useful information for conserving the endangered species. East and South Asia has been demonstrated to be one of the centres of domestication. Origin and evolution of genes and gene families have been explored, which shed new insight on the genetic mechanism of adaptation. In the genomic era, Chinese researchers also made a transition from single-gene to a genomic investigation approach. Considering the fact that amazing progress has been made in the past few years, and more and more talented young scientists are entering field, the future of molecular evolution study in China holds much promise.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Letícia Ferreira Lima ◽  
André Quintanilha Torres ◽  
Rodrigo Jardim ◽  
Rafael Dias Mesquita ◽  
Renata Schama

Abstract Background Arthropoda, the most numerous and diverse metazoan phylum, has species in many habitats where they encounter various microorganisms and, as a result, mechanisms for pathogen recognition and elimination have evolved. The Toll pathway, involved in the innate immune system, was first described as part of the developmental pathway for dorsal-ventral differentiation in Drosophila. Its later discovery in vertebrates suggested that this system was extremely conserved. However, there is variation in presence/absence, copy number and sequence divergence in various genes along the pathway. As most studies have only focused on Diptera, for a comprehensive and accurate homology-based approach it is important to understand gene function in a number of different species and, in a group as diverse as insects, the use of species belonging to different taxonomic groups is essential. Results We evaluated the diversity of Toll pathway gene families in 39 Arthropod genomes, encompassing 13 different Insect Orders. Through computational methods, we shed some light into the evolution and functional annotation of protein families involved in the Toll pathway innate immune response. Our data indicates that: 1) intracellular proteins of the Toll pathway show mostly species-specific expansions; 2) the different Toll subfamilies seem to have distinct evolutionary backgrounds; 3) patterns of gene expansion observed in the Toll phylogenetic tree indicate that homology based methods of functional inference might not be accurate for some subfamilies; 4) Spatzle subfamilies are highly divergent and also pose a problem for homology based inference; 5) Spatzle subfamilies should not be analyzed together in the same phylogenetic framework; 6) network analyses seem to be a good first step in inferring functional groups in these cases. We specifically show that understanding Drosophila’s Toll functions might not indicate the same function in other species. Conclusions Our results show the importance of using species representing the different orders to better understand insect gene content, origin and evolution. More specifically, in intracellular Toll pathway gene families the presence of orthologues has important implications for homology based functional inference. Also, the different evolutionary backgrounds of Toll gene subfamilies should be taken into consideration when functional studies are performed, especially for TOLL9, TOLL, TOLL2_7, and the new TOLL10 clade. The presence of Diptera specific clades or the ones lacking Diptera species show the importance of overcoming the Diptera bias when performing functional characterization of Toll pathways.


2017 ◽  
Vol 114 (34) ◽  
pp. 9146-9151 ◽  
Author(s):  
Huixian Zhang ◽  
Vydianathan Ravi ◽  
Boon-Hui Tay ◽  
Sumanty Tohari ◽  
Nisha E. Pillai ◽  
...  

ParaHox genes (Gsx, Pdx, and Cdx) are an ancient family of developmental genes closely related to the Hox genes. They play critical roles in the patterning of brain and gut. The basal chordate, amphioxus, contains a single ParaHox cluster comprising one member of each family, whereas nonteleost jawed vertebrates contain four ParaHox genomic loci with six or seven ParaHox genes. Teleosts, which have experienced an additional whole-genome duplication, contain six ParaHox genomic loci with six ParaHox genes. Jawless vertebrates, represented by lampreys and hagfish, are the most ancient group of vertebrates and are crucial for understanding the origin and evolution of vertebrate gene families. We have previously shown that lampreys contain six Hox gene loci. Here we report that lampreys contain only two ParaHox gene clusters (designated as α- and β-clusters) bearing five ParaHox genes (Gsxα, Pdxα, Cdxα, Gsxβ, and Cdxβ). The order and orientation of the three genes in the α-cluster are identical to that of the single cluster in amphioxus. However, the orientation of Gsxβ in the β-cluster is inverted. Interestingly, Gsxβ is expressed in the eye, unlike its homologs in jawed vertebrates, which are expressed mainly in the brain. The lamprey Pdxα is expressed in the pancreas similar to jawed vertebrate Pdx genes, indicating that the pancreatic expression of Pdx was acquired before the divergence of jawless and jawed vertebrate lineages. It is likely that the lamprey Pdxα plays a crucial role in pancreas specification and insulin production similar to the Pdx of jawed vertebrates.


Sign in / Sign up

Export Citation Format

Share Document