scholarly journals Mushroom Bodies Suppress Locomotor Activity in Drosophila melanogaster

1998 ◽  
Vol 5 (1) ◽  
pp. 179-191 ◽  
Author(s):  
Jean-René Martin ◽  
Roman Ernst ◽  
Martin Heisenberg

Locomotor activity of single, freely walking flies in small tubes is analyzed in the time domain of several hours. To assess the influence of the mushroom bodies on walking activity, three independent noninvasive methods interfering with mushroom body function are applied: chemical ablation of the mushroom body precursor cells; a mutant affecting Kenyon cell differentiation (mushroom body miniature1); and the targeted expression of the catalytic subunit of tetanus toxin in subsets of Kenyon cells. All groups of flies with mushroom body defects show an elevated level of total walking activity. This increase is attributable to the slower and less complete attenuation of activity during the experiment. Walking activity in normal and mushroom body-deficient flies is clustered in active phases (bouts) and rest periods (pauses). Neither the initiation nor the internal structure, but solely the termination of bouts seems to be affected by the mushroom body defects. How this finding relates to the well-documented role of the mushroom bodies in olfactory learning and memory remains to be understood.

1998 ◽  
Vol 5 (1) ◽  
pp. 90-101 ◽  
Author(s):  
Dagmar Malun

In the honeybee the mushroom bodies are prominent neuropil structures arranged as pairs in the dorsal protocerebrum of the brain. Each mushroom body is composed of a medial and a lateral subunit. To understand their development, the proliferation pattern of mushroom body intrinsic cells, the Kenyon cells, were examined during larval and pupal stages using the bromodeoxyuridine (BrdU) technique and chemical ablation with hydroxyurea.By larval stage 1, ∼40 neuroblasts are located in the periphery of the protocerebrum. Many of these stem cells divide asymmetrically to produce a chain of ganglion mother cells. Kenyon cell precursors underly a different proliferation pattern. With the beginning of larval stage 3, they are arranged in two large distinct cell clusters in each side of the brain. BrdU incorporation into newly synthesized DNA and its immunohistochemical detection show high mitotic activity in these cell clusters that lasts until mid-pupal stages. The uniform diameter of cells, the homogeneous distribution of BrdU-labeled nuclei, and the presence of equally dividing cells in these clusters indicate symmetrical cell divisions of Kenyon cell precursors.Hydroxyurea applied to stage 1 larvae caused the selective ablation of mushroom bodies. Within these animals a variety of defects were observed. In the majority of brains exhibiting mushroom body defects, either one mushroom body subunit on one or on both sides, or three or four subunits (e.g., complete mushroom body ablation) were missing. In contrast, partial ablation of mushroom body subunits resulting in small Kenyon cell clusters and peduncles was observed very rarely. These findings indicate that hydroxyurea applied during larval stage 1 selectively deletes Kenyon stem cells. The results also show that each mushroom body subunit originates from a very small number of stem cells and develops independently of its neighboring subunit.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
J. M. Miguel ◽  
M. Roldán ◽  
C. Pérez-Rico ◽  
M. Ortiz ◽  
L. Boquete ◽  
...  

AbstractThis study aimed to assess the role of multifocal visual-evoked potentials (mfVEPs) as a guiding factor for clinical conversion of radiologically isolated syndrome (RIS). We longitudinally followed a cohort of 15 patients diagnosed with RIS. All subjects underwent thorough ophthalmological, neurological and imaging examinations. The mfVEP signals were analysed to obtain features in the time domain (SNRmin: amplitude, Latmax: monocular latency) and in the continuous wavelet transform (CWT) domain (bmax: instant in which the CWT function maximum appears, Nmax: number of CWT function maximums). The best features were used as inputs to a RUSBoost boosting-based sampling algorithm to improve the mfVEP diagnostic performance. Five of the 15 patients developed an objective clinical symptom consistent with an inflammatory demyelinating central nervous system syndrome during follow-up (mean time: 13.40 months). The (SNRmin) variable decreased significantly in the group that converted (2.74 ± 0.92 vs. 4.07 ± 0.95, p = 0.01). Similarly, the (bmax) feature increased significantly in RIS patients who converted (169.44 ± 24.81 vs. 139.03 ± 11.95 (ms), p = 0.02). The area under the curve analysis produced SNRmin and bmax values of 0.92 and 0.88, respectively. These results provide a set of new mfVEP features that can be potentially useful for predicting prognosis in RIS patients.


1990 ◽  
Vol 186 (2-3) ◽  
pp. 223-230 ◽  
Author(s):  
Sanders A. McDougall ◽  
Timothy F. Arnold ◽  
Arthur J. Nonneman

2019 ◽  
Vol 110 (1-2) ◽  
pp. 35-49 ◽  
Author(s):  
Talia Levitas-Djerbi ◽  
Dana Sagi ◽  
Ilana Lebenthal-Loinger ◽  
Tali Lerer-Goldshtein ◽  
Lior Appelbaum

Background: Hypothalamic neurotensin (Nts)-secreting neurons regulate fundamental physiological processes including metabolism and feeding. However, the role of Nts in modulation of locomotor activity, sleep, and arousal is unclear. We previously identified and characterized Nts neurons in the zebrafish hypothalamus. Materials and Methods: In order to study the role of Nts, nts mutant (nts–/–), and overexpressing zebrafish were generated. Results: The expression of both nts mRNA and Nts protein was reduced during the night in wild-type zebrafish. Behavioral assays revealed that locomotor activity was decreased during both day and night, while sleep was increased exclusively during the nighttime in nts–/– larvae. Likewise, inducible overexpression of Nts increased arousal in hsp70:Gal4/uas:Nts larvae. Furthermore, the behavioral response to light-to-dark transitions was reduced in nts–/– larvae. In order to elucidate potential contenders that may mediate Nts action on these behaviors, we profiled the transcriptome of 6 dpf nts–/– larvae. Among other genes, the expression levels of melanin-concentrating hormone receptor 1b were increased in nts–/– larvae. Furthermore, a portion of promelanin-concentrating hormone 1 (pmch1) and pmch2 neurons expressed the nts receptor. In addition, expression of the the two zebrafish melanin-concentrating hormone (Mch) orthologs, Mch1 and Mch2, was increased in nts–/– larvae. Conclusion: These results show that the Nts and Mch systems interact and modulate locomotor activity and arousal.


Sign in / Sign up

Export Citation Format

Share Document