scholarly journals Dielectrophoretic Force Equilibrium of Complex Particles

2020 ◽  
Vol 14 (5) ◽  
Author(s):  
T. Elkeles ◽  
P. García-Sánchez ◽  
W. Yue ◽  
A. Ramos ◽  
G. Yossifon
Author(s):  
LIMING YU ◽  
FRANCIS E. H. TAY ◽  
GUOLIN XU ◽  
CIPRIAN ILIESCU ◽  
MARIOARA AVRAM

This paper presents a novel dielectrophoresis (DEP) device where the DEP electrodes define the channel walls. This is achieved by fabricating microfluidic channel walls from highly doped silicon so that they can also function as DEP electrodes. Compared with planar electrodes, this device increases the exhibited dielectrophoretic force on the particle, therefore decreases the applied potential and reduces the heating of the solution. A DEP device with triangle electrodes has been designed and fabricated. Compared with the other two configurations, semi-circular and square, triangle electrode presents an increased force, which can decrease the applied voltage and reduce the Joule effect. Yeast cells have been used to for testing the performance of the device.


2010 ◽  
Vol 298 (3) ◽  
pp. H861-H873 ◽  
Author(s):  
Dotan Algranati ◽  
Ghassan S. Kassab ◽  
Yoram Lanir

The mechanisms by which the contracting myocardium exerts extravascular forces (intramyocardial pressure, IMP) on coronary blood vessels and by which it affects the coronary flow remain incompletely understood. Several myocardium-vessel interaction (MVI) mechanisms have been proposed, but none can account for all the major flow features. In the present study, we hypothesized that only a specific combination of MVI mechanisms can account for all observed coronary flow features. Three basic interaction mechanisms (time-varying elasticity, myocardial shortening-induced intracellular pressure, and ventricular cavity-induced extracellular pressure) and their combinations were analyzed based on physical principles (conservation of mass and force equilibrium) in a realistic data-based vascular network. Mechanical properties of both vessel wall and myocardium were coupled through stress analysis to simulate the response of vessels to internal blood pressure and external (myocardial) mechanical loading. Predictions of transmural dynamic vascular pressure, diameter, and flow velocity were determined under each MVI mechanism and compared with reported data. The results show that none of the three basic mechanisms alone can account for the measured data. Only the combined effect of the cavity-induced extracellular pressure and the shortening-induced intramyocyte pressure provides good agreement with the majority of measurements. These findings have important implications for elucidating the physical basis of IMP and for understanding coronary phasic flow and coronary artery and microcirculatory disease.


2014 ◽  
Vol 670-671 ◽  
pp. 1041-1044 ◽  
Author(s):  
Xi Wang Wang ◽  
Xiao Yang Li ◽  
Lin Lin Zhang ◽  
Xiao Guang Wang

Joint member stiffness in a bolted connection directly influence the safety of a design in regard to both static and fatigue loading as well as in the prevention of separation in the connection. Thus, the accurate determination of the stiffness is of extreme importance to predict the behavior of bolted assemblies. In this paper, An analytical 3D axisymmetric model of bolted joints is proposed to obtain the joint stiffness of Bolted Joints. Considering many different analytical models have been proposed to calculate the joint stiffness, the expression based force equilibrium can be a easy way to choose the best expression for the joint stiffness as a judgment criteria.


2021 ◽  
Vol 341 ◽  
pp. 00039
Author(s):  
Maria Karelina ◽  
Tatyana Balabina ◽  
Alexey Mamaev

Evaluation of the rolling resistance of car tires is now often performed on drum stands like car tests. This necessitates the study of the mechanics of interaction between the wheel and the drum in order to determine its force and kinematic characteristics, including the values and points of application of tangential and normal forces in contact with the drum. These problems can be solved taking into account that the mechanics of elastic wheel rolling on a drum is the same as when rolling on a flat rigid support surface. In this paper, from consideration of the mechanics of interaction between an elastic wheel and a drum, using the equations of power balance and force equilibrium of the wheel, the equations for determining the point of normal reaction in contact and its arm relative to the wheel axis during its rolling along one and two drums have been derived.. These dependencies have a simple form and can be applied when considering the rolling of both a single wheel and the car as a whole on a drum stand.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Chunyu Fu ◽  
Yuyang Wang ◽  
Dawei Tong

The crack presence causes nonlinear stress distributions along the sections of a beam, which change the neutral axis of the sections and further affect the beam stiffness. Thus, this paper presents a method for the stiffness estimation of cracked beams based on the stress distributions. First, regions whose stresses are affected by the crack are analyzed, and according to the distance to the crack, different nonlinear stress distributions are modeled for the effect regions. The inertia moments of section are evaluated by substituting these stress distributions into the internal force equilibrium of section. Then the finite-element technique is adopted to estimate the stiffness of the cracked beam. The estimated stiffness is used to predict the displacements of simply supported beams with a crack, and the results show that both static and vibrational displacements are accurately predicted, which indicates that the estimated stiffness is precise enough. Besides, as the section shape of beam is not limited in the process of modeling the stress distributions, the method could be applicable not only to the stiffness estimation of cracked beams with a rectangular section, but also to that of the beams with a T-shaped section if the crack depth ratio is not larger than 0.7.


2004 ◽  
Vol 15 (10) ◽  
pp. S672-S677 ◽  
Author(s):  
Rosa H M Chan ◽  
Carmen K M Fung ◽  
Wen J Li

ACS Sensors ◽  
2018 ◽  
Vol 3 (6) ◽  
pp. 1196-1202 ◽  
Author(s):  
Yi-Hsin Tai ◽  
Chia-Wei Lee ◽  
Dao-Ming Chang ◽  
Yu-Sheng Lai ◽  
Ding-Wei Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document