scholarly journals Charge impurity as a localization center for singlet excitons in single-wall nanotubes

2012 ◽  
Vol 86 (12) ◽  
Author(s):  
Benjamin O. Tayo ◽  
Slava V. Rotkin
2021 ◽  
Vol 23 (1) ◽  
pp. 219-228
Author(s):  
Nabanita Saikia ◽  
Mohamed Taha ◽  
Ravindra Pandey

The rational design of self-assembled nanobio-molecular hybrids of peptide nucleic acids with single-wall nanotubes rely on understanding how biomolecules recognize and mediate intermolecular interactions with the nanomaterial's surface.


Author(s):  
S. A. Lurie ◽  
Yu. O. Solyaev ◽  
Ya. I. Estrin ◽  
E. R. Badamshina ◽  
G. S. Kulagina

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Muhammad Bilal ◽  
Hamna Arshad ◽  
Muhammad Ramzan ◽  
Zahir Shah ◽  
Poom Kumam

AbstractThe key objective of the present research is to examine the hybrid magnetohydrodynamics (MHD) nanofluid (Carbon-nanotubes and ferrous oxide–water) CNT–Fe3O4/H2 flow into a horizontal parallel channel with thermal radiation through squeezing and dilating porous walls. The parting motion is triggered by the porous walls of the channel. The fluid flow is time-dependent and laminar. The channel is asymmetric and the upper and lower walls are distinct in temperature and are porous. With the combination of nanoparticles of Fe3O4 and single and multi-wall carbon nanotubes, the hybrid nanofluid principle is exploited. By using the similarity transformation, the set of partial differential equations (PDEs) of this mathematical model, governed by momentum and energy equations, is reduced to corresponding ordinary differential equations (ODEs). A very simple numerical approach called the Runge–Kutta system of order four along with the shooting technique is used to achieve the solutions for regulating ODEs. MATLAB computing software is used to create temperature and velocity profile graphs for various emerging parameters. At the end of the manuscript, the main conclusions are summarized. Through different graphs, it is observed that hybrid-nanofluid has more prominent thermal enhancement than simple nanofluid. Further, the single-wall nanotubes have dominated impact on temperature than the multi-wall carbon nanotubes. From the calculations, it is also noted that Fe2O3–MWCNT–water has an average of 4.84% more rate of heat transfer than the Fe2O3–SWCNT–water. On the other hand, 8.27% more heat flow observed in Fe2O3–SWCNT–water than the simple nanofluid. Such study is very important in coolant circulation, inter-body fluid transportation, aerospace engineering, and industrial cleaning procedures, etc.


2005 ◽  
Vol 19 (11) ◽  
pp. 517-527 ◽  
Author(s):  
HAIBIN LI ◽  
XIAOGUANG WANG

The entanglement in one-dimensional Anderson model is studied. The pairwise entanglement has a direct relation to the localization length and is reduced by disorder. Entanglement distribution displays the entanglement localization. The pairwise entanglements around localization center exhibit a maximum as the disorder strength increases. The dynamics of entanglement are also investigated.


1998 ◽  
Vol 244 ◽  
pp. 186-191 ◽  
Author(s):  
H. Kuzmany ◽  
B. Burger ◽  
M. Fally ◽  
A.G. Rinzler ◽  
R.E. Smalley

2002 ◽  
Vol 740 ◽  
Author(s):  
Merlyn X. Pulikkathara ◽  
Meisha L. Shofner ◽  
Richard T. Wilkins ◽  
Jesus G. Vera ◽  
Enrique V. Barrera ◽  
...  

ABSTRACTFluorinated Single Wall Nanotubes (f-SWNTs) have been processed in polyethylene by an incipient wetting technique to achieve a well dispersed nanocomposite for radiation protection. In some cases, samples were further processed using the rapid prototyping method of extrusion freeform fabrication. Composites were exposed to 40 MeV proton radiation with a flux of about 1.7×107 protons/cm2/sec to a total fluence of 3×1010 protons/cm2.This exposure is consistent with a long-term space mission in low earth orbit. The samples were evaluated by means of Raman spectroscopy and thermogravimetric analysis (TGA). These results were compared to the unexposed composite and unfilled polymer samples. This study has focused on the stability of the nanotube composites when exposed to radiation and prior to hydrogen exposure. It was shown that the stability of the functional group is not constant with SWNTs produced by different processes and that radiation exposure is capable of defluorinating SWNTs in polyethylene.


2001 ◽  
Vol 703 ◽  
Author(s):  
G.F. Farrell ◽  
G. Chambers ◽  
A.B Dalton ◽  
E. Cummins ◽  
M. McNamara ◽  
...  

ABSTRACTIn this study the intermolecular interactions of small diameter (∼0.7nm) carbon nanotubes and γ-cyclodextrin were examined. Four samples of γ cyclodextrin and HiPco carbon nanotubes were prepared. The first, by grinding the tubes and the cyclodextrin (1:30 ratio) together in a dry mixture, the second was prepared in a similar fashion but was ground in the presence of water (1ml). Finally an aqueous solution of γ-cyclodextrin (0.3M) and HiPco carbon nanotubes (5mg) was prepared by refluxing for ∼100 hours, forming a pale yellow solution from which a number of crystals were produced, both the solution and the recrystallised material were analysed. The samples were analysed using UV-Vis-NIR and Raman spectroscopy. The results presented are the first spectroscopic evidence of an intermolecular interaction between γ-cyclodextrin and single wall nanotubes.


Sign in / Sign up

Export Citation Format

Share Document