scholarly journals Phonon impact on optical control schemes of quantum dots: Role of quantum dot geometry and symmetry

2017 ◽  
Vol 96 (24) ◽  
Author(s):  
S. Lüker ◽  
T. Kuhn ◽  
D. E. Reiter
2020 ◽  
Vol 29 (01n04) ◽  
pp. 2040017
Author(s):  
F. Jain ◽  
R. H. Gudlavalleti ◽  
R. Mays ◽  
B. Saman ◽  
J. Chandy ◽  
...  

Multi-state room temperature operation of SiOx-cladded Si quantum dots (QD) and GeOx-cladded Ge quantum dot channel (QDC) field-effect transistors (FETs) and spatial wavefunction switched (SWS)-FETs have been experimentally demonstrated. This paper presents simulation of cladded Si and Ge quantum dot channel (QDC) field-effect transistors at 4.2°K and milli-Kelvin temperatures. An array of thin oxide barrier/cladding (∼1nm) on quantum dots forms a quantum dot superlattice (QDSL). A gradual channel approximation model using potential and inversion layer charge density nQM, obtained by the self-consistent solution of the Schrodinger and Poisson’s equations, is shown to predict I-V characteristics up to milli-Kelvin temperatures. Physics-based equivalent circuit models do not work below 53°K. However, they may be improved by adapting parameters derived from quantum simulations. Low-temperature operation improves noise margins in QDC- and SWS-FET based multi-bit logic, which dissipates lower power and comprise of fewer device count. In addition, the role of self-assembled cladded QDs with transfer gate provides a novel pathway to implement qubit processing.


2020 ◽  
Vol 49 (29) ◽  
pp. 10212-10223
Author(s):  
Elisabetta Benazzi ◽  
Valerio C. Coni ◽  
Mattia Boni ◽  
Raffaello Mazzaro ◽  
Vittorio Morandi ◽  
...  

Light-driven hydrogen evolution using CdTe/CdS quantum dots as sensitizers depends on the nature of the capping agent and nanocrystal size.


ChemSusChem ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 4724-4753 ◽  
Author(s):  
Jasmin S. Shaikh ◽  
Navajsharif S. Shaikh ◽  
Sawanta S. Mali ◽  
Jyoti V. Patil ◽  
Sonali A. Beknalkar ◽  
...  

Proceedings ◽  
2020 ◽  
Vol 56 (1) ◽  
pp. 23
Author(s):  
Dario Grimaldi ◽  
Emil Kelderer ◽  
Andreas Hohenau ◽  
Harald Ditlbacher ◽  
Joachim R. Krenn

We investigate the photoconductivity properties of lead sulphide (PbS) quantum dot ensembles in lithographically tailored gold electrodes with smallest gaps of 15 nm. We demonstrate that quantum dots are reliable nanoscale light/current converters and correlate the measured photocurrents to the quantum dot number, the gap voltage and light irradiance. For the latter, we find a photocurrent power law dependence with an exponent of 2/3. Furthermore, we probe the role of plasmonic effects in the gold electrodes and image by scanning photocurrent microscopy the spatial dependence of photocurrent generation.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Pawan K. Tiwari ◽  
Mugdha Sahu ◽  
Gagan Kumar ◽  
Mohsen Ashourian

The quantum dot is a kind of nanoparticle whose dimension is smaller than the size of a typical nanoparticle ranging from tens of nanometers to a few hundredths of nanometers. The quantum mechanical behavior associated with the quantum dot displays different optical and electronic properties, enabling the quantum dot to find potential applications in a multitude of areas such as solar cells, light-emitting diodes, lasers, and biomedical applications. The objective of this investigation is to explore its fundamentals, synthesis, and applications, especially in the healthcare domain. We have discussed the quantum dot synthesis techniques using chemical methods, namely, wet-chemical methods and vapor-phase methods and plasma processing methods, namely, an ion sputtering method and plasma-enhanced chemical vapor deposition method. We have thoroughly investigated the application of quantum dots in imaging, diagnostics, and gene therapy areas. A significant outcome of this review is to propose quantum dots as a new modality in the treatment of cancer and gene therapeutics in the healthcare domain and the potentials of artificial intelligence to improve their performance via the applications of neural networks.


2021 ◽  
Author(s):  
Xu Dan ◽  
Ruiyi Li ◽  
Qinsheng Wang ◽  
Yongqiang Yang ◽  
Haiyan Zhu ◽  
...  

The paper reports the synthesis of nickel-silver-graphene quantum dot-graphene hybrid. Histidine-functionalized graphene quantum dots (His-GQDs) were bonded to graphene oxide (GO) and then combined with Ni2+ and Ag+ to form...


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4439
Author(s):  
Shui-Yang Lien ◽  
Yu-Hao Chen ◽  
Wen-Ray Chen ◽  
Chuan-Hsi Liu ◽  
Chien-Jung Huang

In this study, adding CsPbI3 quantum dots to organic perovskite methylamine lead triiodide (CH3NH3PbI3) to form a doped perovskite film filmed by different temperatures was found to effectively reduce the formation of unsaturated metal Pb. Doping a small amount of CsPbI3 quantum dots could enhance thermal stability and improve surface defects. The electron mobility of the doped film was 2.5 times higher than the pristine film. This was a major breakthrough for inorganic quantum dot doped organic perovskite thin films.


Sign in / Sign up

Export Citation Format

Share Document