scholarly journals More realistic holographic model of color superconductivity with higher derivative corrections

2021 ◽  
Vol 104 (4) ◽  
Author(s):  
Cao H. Nam
2021 ◽  
Vol 81 (12) ◽  
Author(s):  
Kazem Bitaghsir Fadafan ◽  
Jesús Cruz Rojas

AbstractWe study a bottom-up holographic description of the QCD colour superconducting phase in the presence of higher derivative corrections. We expand this holographic model in the context of Gauss–Bonnet (GB) gravity. The Cooper pair condensate has been investigated in the deconfinement phase for different values of the GB coupling parameter $$\lambda _{G B}$$ λ GB , we observe a change in the value of the critical chemical potential $$\mu _c$$ μ c in comparison to Einstein gravity. We find that $$\mu _c$$ μ c grows as $$\lambda _{G B}$$ λ GB increases. We add four fermion interactions and show that in the presence of these corrections the main interesting features of the model are still present and that the intrinsic attractive interaction can not be switched off. This study suggests to find GB corrections to equation of state of holographic QCD matter.


2019 ◽  
Vol 99 (10) ◽  
Author(s):  
Kazuo Ghoroku ◽  
Kouji Kashiwa ◽  
Yoshimasa Nakano ◽  
Motoi Tachibana ◽  
Fumihiko Toyoda

2011 ◽  
Vol 13 (5) ◽  
pp. 055001 ◽  
Author(s):  
Pallab Basu ◽  
Fernando Nogueira ◽  
Moshe Rozali ◽  
Jared B Stang ◽  
Mark Van Raamsdonk

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Luis F. Alday ◽  
Shai M. Chester ◽  
Himanshu Raj

Abstract We study the stress tensor multiplet four-point function in the 6d maximally supersymmetric (2, 0) AN−1 and DN theories, which have no Lagrangian description, but in the large N limit are holographically dual to weakly coupled M-theory on AdS7× S4 and AdS7× S4/ℤ2, respectively. We use the analytic bootstrap to compute the 1-loop correction to this holographic correlator coming from Witten diagrams with supergravity R and the first higher derivative correction R4 vertices, which is the first 1-loop correction computed for a non-Lagrangian theory. We then take the flat space limit and find precise agreement with the corresponding terms in the 11d M-theory S-matrix, some of which we compute for the first time using two-particle unitarity cuts.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Irina Ya. Aref’eva ◽  
Kristina Rannu ◽  
Pavel Slepov

Abstract We present a five-dimensional anisotropic holographic model for light quarks supported by Einstein-dilaton-two-Maxwell action. This model generalizing isotropic holographic model with light quarks is characterized by a Van der Waals-like phase transition between small and large black holes. We compare the location of the phase transition for Wilson loops with the positions of the phase transition related to the background instability and describe the QCD phase diagram in the thermodynamic plane — temperature T and chemical potential μ. The Cornell potential behavior in this anisotropic model is also studied. The asymptotics of the Cornell potential at large distances strongly depend on the parameter of anisotropy and orientation. There is also a nontrivial dependence of the Cornell potential on the boundary conditions of the dilaton field and parameter of anisotropy. With the help of the boundary conditions for the dilaton field one fits the results of the lattice calculations for the string tension as a function of temperature in isotropic case and then generalize to the anisotropic one.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Juan Hernandez ◽  
Robert C. Myers ◽  
Shan-Ming Ruan

Abstract We examine holographic complexity in the doubly holographic model introduced in [1, 2] to study quantum extremal islands. We focus on the holographic complexity=volume (CV) proposal for boundary subregions in the island phase. Exploiting the Fefferman-Graham expansion of the metric and other geometric quantities near the brane, we derive the leading contributions to the complexity and interpret these in terms of the generalized volume of the island derived from the induced higher-curvature gravity action on the brane. Motivated by these results, we propose a generalization of the CV proposal for higher curvature theories of gravity. Further, we provide two consistency checks of our proposal by studying Gauss-Bonnet gravity and f(ℛ) gravity in the bulk.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
M. Cvitan ◽  
P. Dominis Prester ◽  
S. Giaccari ◽  
M. Paulišić ◽  
I. Vuković

Abstract We analyze a novel approach to gauging rigid higher derivative (higher spin) symmetries of free relativistic actions defined on flat spacetime, building on the formalism originally developed by Bonora et al. and Bekaert et al. in their studies of linear coupling of matter fields to an infinite tower of higher spin fields. The off-shell definition is based on fields defined on a 2d-dimensional master space equipped with a symplectic structure, where the infinite dimensional Lie algebra of gauge transformations is given by the Moyal commutator. Using this algebra we construct well-defined weakly non-local actions, both in the gauge and the matter sector, by mimicking the Yang-Mills procedure. The theory allows for a description in terms of an infinite tower of higher spin spacetime fields only on-shell. Interestingly, Euclidean theory allows for such a description also off-shell. Owing to its formal similarity to non-commutative field theories, the formalism allows for the introduction of a covariant potential which plays the role of the generalised vielbein. This covariant formulation uncovers the existence of other phases and shows that the theory can be written in a matrix model form. The symmetries of the theory are analyzed and conserved currents are explicitly constructed. By studying the spin-2 sector we show that the emergent geometry is closely related to teleparallel geometry, in the sense that the induced linear connection is opposite to Weitzenböck’s.


Sign in / Sign up

Export Citation Format

Share Document