scholarly journals Unitarized diffractive scattering in QCD and its application to virtual photon total cross sections

1999 ◽  
Vol 60 (3) ◽  
Author(s):  
Rim Dib ◽  
Justin Khoury ◽  
C. S. Lam
2014 ◽  
Vol 29 (15) ◽  
pp. 1450096 ◽  
Author(s):  
V. V. Anisovich ◽  
K. V. Nikonov ◽  
V. A. Nikonov ◽  
J. Nyiri

The LHC energies are those at which the asymptotic regime in hadron–hadron diffractive collisions (pp, πp, ππ) might be switched on. Based on results of the Dakhno–Nikonov eikonal model which is a generalization of the Good–Walker eikonal approach for a continuous set of channels, we present a picture for transformation of the constituent quark mode to the black disk one. In the black disk mode [Formula: see text], we have a growth of the logarithm squared type for total and elastic cross-sections, σ tot ~ ln 2 s and σ el ~ ln 2 s and [Formula: see text]-scaling for diffractive scattering and diffractive dissociation of hadrons. The diffractive dissociation cross-section grows as σD ~ ln s, σDD ~ ln s, and their relative contribution tends to zero: σD/σ tot → 0, σDD/σ tot → 0. Asymptotic characteristics of diffractive and total cross-sections are universal, and this results in the asymptotical equality of cross-sections for all types of hadrons (the Gribov universality). The energy scale for switching on the asymptotic mode is estimated for different processes.


1992 ◽  
Vol 07 (28) ◽  
pp. 2559-2565 ◽  
Author(s):  
SAUL BARSHAY ◽  
PATRICK HEILIGER ◽  
DIETER REIN

A new structure for the high-energy diffractive scattering amplitude is derived in two complementary ways (one of them recently revealed as due to Richard Feynman). Total cross-sections increase, due to a blackening of the interaction and also due to an effect which leads to an increase in the effective interaction area at fixed opacity. These features are dynamically related to the dominant high-energy process of multiparticle production.


Author(s):  
S. Golladay

The theory of multiple scattering has been worked out by Groves and comparisons have been made between predicted and observed signals for thick specimens observed in a STEM under conditions where phase contrast effects are unimportant. Independent measurements of the collection efficiencies of the two STEM detectors, calculations of the ratio σe/σi = R, where σe, σi are the total cross sections for elastic and inelastic scattering respectively, and a model of the unknown mass distribution are needed for these comparisons. In this paper an extension of this work will be described which allows the determination of the required efficiencies, R, and the unknown mass distribution from the data without additional measurements or models. Essential to the analysis is the fact that in a STEM two or more signal measurements can be made simultaneously at each image point.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Roman N. Lee ◽  
Alexey A. Lyubyakin ◽  
Vyacheslav A. Stotsky

Abstract Using modern multiloop calculation methods, we derive the analytical expressions for the total cross sections of the processes e−γ →$$ {e}^{-}X\overline{X} $$ e − X X ¯ with X = μ, γ or e at arbitrary energies. For the first two processes our results are expressed via classical polylogarithms. The cross section of e−γ → e−e−e+ is represented as a one-fold integral of complete elliptic integral K and logarithms. Using our results, we calculate the threshold and high-energy asymptotics and compare them with available results.


2006 ◽  
Vol 39 (6) ◽  
pp. 1337-1344 ◽  
Author(s):  
J Beale ◽  
S Armitage ◽  
G Laricchia

2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
E. Iancu ◽  
A. H. Mueller ◽  
D. N. Triantafyllopoulos ◽  
S. Y. Wei

Abstract Using the dipole picture for electron-nucleus deep inelastic scattering at small Bjorken x, we study the effects of gluon saturation in the nuclear target on the cross-section for SIDIS (single inclusive hadron, or jet, production). We argue that the sensitivity of this process to gluon saturation can be enhanced by tagging on a hadron (or jet) which carries a large fraction z ≃ 1 of the longitudinal momentum of the virtual photon. This opens the possibility to study gluon saturation in relatively hard processes, where the virtuality Q2 is (much) larger than the target saturation momentum $$ {Q}_s^2 $$ Q s 2 , but such that z(1 − z)Q2 ≲ $$ {Q}_s^2 $$ Q s 2 . Working in the limit z(1 − z)Q2 ≪ $$ {Q}_s^2 $$ Q s 2 , we predict new phenomena which would signal saturation in the SIDIS cross-section. For sufficiently low transverse momenta k⊥ ≪ Qs of the produced particle, the dominant contribution comes from elastic scattering in the black disk limit, which exposes the unintegrated quark distribution in the virtual photon. For larger momenta k⊥ ≳ Qs, inelastic collisions take the leading role. They explore gluon saturation via multiple scattering, leading to a Gaussian distribution in k⊥ centred around Qs. When z(1 − z)Q2 ≪ Q2, this results in a Cronin peak in the nuclear modification factor (the RpA ratio) at moderate values of x. With decreasing x, this peak is washed out by the high-energy evolution and replaced by nuclear suppression (RpA< 1) up to large momenta k⊥ ≫ Qs. Still for z(1 − z)Q2 ≪ $$ {Q}_s^2 $$ Q s 2 , we also compute SIDIS cross-sections integrated over k⊥. We find that both elastic and inelastic scattering are controlled by the black disk limit, so they yield similar contributions, of zeroth order in the QCD coupling.


1998 ◽  
Vol 130 (3) ◽  
pp. 340-347 ◽  
Author(s):  
S. M. Grimes ◽  
J. D. Anderson ◽  
R. W. Bauer ◽  
V. A. Madsen

Sign in / Sign up

Export Citation Format

Share Document