scholarly journals Gravitational field of a Schwarzschild black hole and a rotating mass ring

2014 ◽  
Vol 90 (4) ◽  
Author(s):  
Yasumichi Sano ◽  
Hideyuki Tagoshi
Author(s):  
Nathalie Deruelle ◽  
Jean-Philippe Uzan

This chapter discusses the Schwarzschild black hole. It demonstrates how, by a judicious change of coordinates, it is possible to eliminate the singularity of the Schwarzschild metric and reveal a spacetime that is much larger, like that of a black hole. At the end of its thermonuclear evolution, a star collapses and, if it is sufficiently massive, does not become stabilized in a new equilibrium configuration. The Schwarzschild geometry must therefore represent the gravitational field of such an object up to r = 0. This being said, the Schwarzschild metric in its original form is singular, not only at r = 0 where the curvature diverges, but also at r = 2m, a surface which is crossed by geodesics.


2013 ◽  
Vol 28 (02) ◽  
pp. 1350007 ◽  
Author(s):  
VLADIMIR N. LUKASH ◽  
VLADIMIR N. STROKOV

We use the phenomenological approach to study properties of space–time in the vicinity of the Schwarzschild black-hole singularity. Requiring finiteness of the Schwarzschild-like metrics we come to the notion of integrable singularity that is, in a sense, weaker than the conventional singularity and allows the (effective) matter to pass to the white-hole region. This leads to a possibility of generating a new universe there. Thanks to the gravitational field of the singularity, this universe is already born highly inflated ("singularity-induced inflation") before the ordinary inflation starts.


2017 ◽  
Vol 57 (2) ◽  
Author(s):  
Stanislav Komarov ◽  
Alexander Gorbatsievich ◽  
Alexander Tarasenko

A compact binary star that moves in a strong external gravitational field of a Schwarzschild black hole is considered. Decomposition of the redshift into a series with respect to the size of the binary system is obtained. This expression is used to calculate the redshift for a model binary system. Possible application of the results is discussed.


2021 ◽  
Author(s):  
Xijia Wang

Abstract In Cosmic continuum, the cosmic system collapse into a Schwarzschild black hole under the action of a strong gravitational field, and the Planck spheres at the center of the black hole continues to collapse into dark mass bodies, forming dark celestial body and singularity. The Schwarzschild radius is the upper limit of a black hole, and the Planck sphere is the lower limit of a black hole. The singularity is the conversion point between the old and new cosmic systems. The singularity erupts the Planck spheres under the action of a strong gravitational field, and the Planck spheres expands outward to form a new cosmic system. The Planck sphere is both the end of the old cosmic system and the starting point of the new cosmic system. The black hole collapse and the singularity eruption are mirror images of each other. The Planck sphere is the front of the mirror, and the singularity is the back of the mirror.


2021 ◽  
Vol 81 (10) ◽  
Author(s):  
Marco Astorino ◽  
Adriano Viganò

AbstractAn analytical solution of four-dimensional General Relativity, representing an array of collinear and accelerating black holes, is constructed with the inverse scattering method. The metric can be completely regularised from any conical singularity, thanks to the presence of an external gravitational field. Therefore the multi-black hole configuration can be maintained at equilibrium without the need of strings or struts. Some notable subcases such as the accelerating distorted Schwarzschild black hole and the distorted double C-metric are explicitly presented. The Smarr law and the thermodynamics of these systems is studied. The Bonnor–Swaminarayan and the Bičák–Hoenselaers–Schmidt particle metrics are recovered, through appropriate limits, from the multi-black holes solutions.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Panos Betzios ◽  
Nava Gaddam ◽  
Olga Papadoulaki

Abstract We describe a unitary scattering process, as observed from spatial infinity, of massless scalar particles on an asymptotically flat Schwarzschild black hole background. In order to do so, we split the problem in two different regimes governing the dynamics of the scattering process. The first describes the evolution of the modes in the region away from the horizon and can be analysed in terms of the effective Regge-Wheeler potential. In the near horizon region, where the Regge-Wheeler potential becomes insignificant, the WKB geometric optics approximation of Hawking’s is replaced by the near-horizon gravitational scattering matrix that captures non-perturbative soft graviton exchanges near the horizon. We perform an appropriate matching for the scattering solutions of these two dynamical problems and compute the resulting Bogoliubov relations, that combines both dynamics. This allows us to formulate an S-matrix for the scattering process that is manifestly unitary. We discuss the analogue of the (quasi)-normal modes in this setup and the emergence of gravitational echoes that follow an original burst of radiation as the excited black hole relaxes to equilibrium.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
M. Sharif ◽  
Sehrish Iftikhar

This paper is devoted to studying two interesting issues of a black hole with string cloud background. Firstly, we investigate null geodesics and find unstable orbital motion of particles. Secondly, we calculate deflection angle in strong field limit. We then find positions, magnifications, and observables of relativistic images for supermassive black hole at the galactic center. We conclude that string parameter highly affects the lensing process and results turn out to be quite different from the Schwarzschild black hole.


Sign in / Sign up

Export Citation Format

Share Document