scholarly journals Black hole merger estimates in Einstein-Maxwell and Einstein-Maxwell-dilaton gravity

2017 ◽  
Vol 96 (4) ◽  
Author(s):  
Puttarak Jai-akson ◽  
Auttakit Chatrabhuti ◽  
Oleg Evnin ◽  
Luis Lehner
Keyword(s):  
2008 ◽  
Vol 23 (02) ◽  
pp. 91-98 ◽  
Author(s):  
YUN SOO MYUNG ◽  
YONG-WAN KIM ◽  
YOUNG-JAI PARK

All thermodynamic quantities of the Reissner–Nordström (RN) black hole can be obtained from the dilaton and its potential of two-dimensional (2D) dilaton gravity. The dual relations of four thermodynamic laws are also established. Furthermore, the near-horizon thermodynamics of the extremal RN black hole is completely described by the Jackiw–Teitelboim theory which is obtained by perturbing around the AdS2-horizon.


2002 ◽  
Vol 2002 (11) ◽  
pp. 018-018 ◽  
Author(s):  
Daniel Grumiller ◽  
Dmitri V Vassilevich
Keyword(s):  

1996 ◽  
Vol 389 (2) ◽  
pp. 231-237 ◽  
Author(s):  
A. Barvinsky ◽  
G. Kunstatter
Keyword(s):  

Author(s):  
Carlos Castro Perelman

A brief review of the essentials of Asymptotic Safety and the Renormalization Group (RG) improvement of the Schwarzschild Black Hole that removes the r = 0 singularity is presented. It is followed with a RG-improvement of the Kantowski-Sachs metric associated with a Schwarzschild black hole interior and such that there is no singularity at t = 0 due to the running Newtonian coupling G(t) (vanishing at t = 0). Two temporal horizons at t _- \simeq t_P and t_+ \simeq t_H are found. For times below the Planck scale t < t_P, and above the Hubble time t > t_H, the components of the Kantowski-Sachs metric exhibit a key sign change, so the roles of the spatial z and temporal t coordinates are exchanged, and one recovers a repulsive inflationary de Sitter-like core around z = 0, and a Schwarzschild-like metric in the exterior region z > R_H = 2G_o M. The inclusion of a running cosmological constant \Lambda (t) follows. We proceed with the study of a dilaton-gravity (scalar-tensor theory) system within the context of Weyl's geometry that permits to single out the expression for the classical potential V (\phi ) = \kappa\phi^4, instead of being introduced by hand, and find a family of metric solutions which are conformally equivalent to the (Anti) de Sitter metric. To conclude, an ansatz for the truncated effective average action of ordinary dilaton-gravity in Riemannian geometry is introduced, and a RG-improved Cosmology based on the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric is explored.


2020 ◽  
Vol 35 (27) ◽  
pp. 2050172
Author(s):  
Younes Younesizadeh ◽  
Ali Hassan Ahmed ◽  
Amir A. Ahmad ◽  
Feyzollah Younesizadeh ◽  
Morad Ebrahimkhas

In this work, a new class of black hole solutions in dilaton gravity has been obtained where the dilaton field is coupled with nonlinear Maxwell invariant as a source. The background space–time in this works is considered as the [Formula: see text]-dimensional toroidal metric. In the presence of the dilaton field (for some unique values of [Formula: see text][Formula: see text] a ), the electric field increases as we got farther away from the origin. In the absence of the dilaton field [Formula: see text], the electric field always decreases as one goes farther away from the origin. In the thermodynamical analysis, we obtain the Smarr formula for our solution. We find that the presence of the dilaton field makes the solutions to be locally stable near the origin. Also, this field vanishes the global stability near the origin compared to the no dilaton field case [Formula: see text]. We can say that the dilaton field has a crucial impact on the thermodynamical stability and it is a key factor in stability analysis. We study the quasinormal modes (QNMs) of black hole solutions in dilaton gravity. For this purpose, we use the WKB approximation method upto first order corrections. We have shown the perturbations decay in corresponding diagrams when the dilaton parameter [Formula: see text] and coupling constant [Formula: see text] change. Motivated by the thermodynamical analogy of black holes and Van der Waals liquid/gas systems, in this work, we investigate PV criticality of the obtained solution. We extend the phase space by considering the cosmological constant as thermodynamic pressure. We obtain the equation of state (EOS) and plot the relevant PV [Formula: see text] diagrams. We also present a class of interior solutions corresponding to the exterior solution in dilaton gravity. The solution which is obtained for a linear equation of state is regular and well-behaved at the stellar interior. a Dilaton field representation.


2018 ◽  
Vol 191 ◽  
pp. 07004
Author(s):  
Maxim Fitkevich

We investigate black hole evaporation in a weakly coupled model of two-dimensional dilaton gravity paying a particular attention to the validity of the semiclassical mean-field approximation. Our model is obtained by adding a reflecting boundary to the celebrated RST model describing N gravitating massless scalar fields to one-loop level. The boundary cuts off the region of strong coupling. Although our model is explicitly weakly coupled, we find that the mean field approximation inevitably fails at the end of black hole evaporation. We propose an alternative semiclassical method aiming at direct calculation of S-matrix elements and illustrate it in a simple shell model.


2007 ◽  
Vol 22 (26) ◽  
pp. 4849-4858 ◽  
Author(s):  
A. SHEYKHI ◽  
N. RIAZI

We consider charged black holes with curved horizons, in five-dimensional dilaton gravity in the presence of Liouville-type potential for the dilaton field. We show how, by solving a pair of coupled differential equations, infinitesimally small angular momentum can be added to these static solutions to obtain charged rotating dilaton black hole solutions. In the absence of dilaton field, the nonrotating version of the solution reduces to the five-dimensional Reissner–Nordström black hole, and the rotating version reproduces the five-dimensional Kerr–Newman modification thereof for small rotation parameter. We also compute the angular momentum and the angular velocity of these rotating black holes which appear at the first order.


2014 ◽  
Vol 29 (02) ◽  
pp. 1450010 ◽  
Author(s):  
S. MIGNEMI

We present a technique for obtaining exact spherically symmetric asymptotically de Sitter (dS) or anti-de Sitter (adS) black hole solutions of dilaton gravity with generic coupling to Maxwell field, starting from asymptotically flat solutions and adding a suitable dilaton potential to the action.


1993 ◽  
Vol 08 (27) ◽  
pp. 2593-2605
Author(s):  
F. BELGIORNO ◽  
A.S. CATTANEO ◽  
F. FUCITO ◽  
M. MARTELLINI

In this paper we reformulate the dilaton-gravity theory of Callan et al. as a new effective conformal field theory which turns out to be a generalization of the so-called SL 2-conformal affine Toda (CAT) theory studied some time ago by Babelon and Bonora. We quantize this model, thus keeping in account the dilaton-gravity quantum effects. We then implement a Renormalization Group analysis to study the black hole thermodynamics and the final state of the Hawking evaporation.


Sign in / Sign up

Export Citation Format

Share Document