scholarly journals Maximum efficiency of absorption refrigerators at arbitrary cooling power

2021 ◽  
Vol 103 (5) ◽  
Author(s):  
Zhuolin Ye ◽  
Viktor Holubec
Author(s):  
A. M. Oleynikov ◽  
L. N. Kanov

The paper gives the description of the original wind electrical installation with mechanical reduction in which the output of vertical axis wind turbine with rather low rotation speed over multiplicator is distributed to a certain number of generators. The number of acting generators is determined by the output of actual operating wind stream at each moment. According to this constructive scheme, it is possible to provide effective and with maximum efficiency installation work in a wide range of wind speeds and under any schedule issued to the consumer of electricity. As there are no any experience in using such complexes, mathematical description of its main elements is given, namely windwheels, generators with electromagnetic excitation of magnetic electrical type, then their interaction with windwheel, and also the results of mathematical modeling of work system regimes under using the offered system of equations. The basis for the mathematical description of the main elements of the installation – synchronous generators – are the system of equations of electrical and mechanical equilibrium in relative units in rotating coordinates without considering saturation of the magnetic circuit. The equation of mechanical equilibrium systems includes torque and brake windwheel electromagnetic moments of generators with taking into account the reduction coefficients and friction. In addition, we specify the alternator rotor dynamics resulting from continuous torque of windwheel fluctuations under the influence of unsteady wind flow and wind speed serving as the original variable is modeled by a set of sinusoids. Model simplification is achieved by equivalization of similar generators and by disregarding these transitions with a small time constant. Calculation the installation with synchronous generators of two types of small and medium capacity taking into account the operational factors allowed us to demonstrate the logic of interactions in the main elements of the reported complex in the process of converting wind flow into the generated active and reactive power. We have shown the possibility of stable system work under changeable wind stream condition by regulating of the plant blade angle and with simultaneous varying of generator number of different types. All these are in great interest for project organizations and power producers.


Author(s):  
Nor Hayati Kassim ◽  
Norlina Mohamed Noor ◽  
Jati Kasuma ◽  
Juliza Saleh ◽  
Ceaser Dealwis ◽  
...  

Companies are now recognizing that their employees require a spectrum of mobile applications in order to achieve maximum efficiency at the workplace. Mobile applications such as WeChat, Twitter and WhatsApp via smartphones have become influential tools and extensively used by employees at the workplace. This state-of-the-art technology in communication has penetrated various fields, including routine administrative jobs at the workplace. The objective of this research is toinvestigate the acceptance of the WhatsApp mobile application for formal use among support staff at The Commission of the City of Kuching North, Sarawak (DBKU). Perceived usefulness, perceived ease of use and behavioral intention of the users in using WhatsApp are the variables measured for job performance. The researchers utilized convenience sampling, whereby a total of 105 employees from two departments participated in the investigation. Data was collected using a set of selfadministered questionnaires which was adapted from Davis. The findings revealed that perceived usefulness and perceived ease of use of WhatsApp as a means of communication were significant for job performance at DBKU. The employees felt more competent during their formal interaction at the workplace as less effort was needed while using WhatsApp. The existence of features which were user-friendly and easy operational functions helped to create positive attitudes when utilizing the application. Faster feedback, ease of use, and convenience were some of the reasons for the employees’ willingness to use WhatsApp for communication at the workplace.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1850 ◽  
Author(s):  
Yann E. Bouvier ◽  
Diego Serrano ◽  
Uroš Borović ◽  
Gonzalo Moreno ◽  
Miroslav Vasić ◽  
...  

In modern aircraft designs, following the More Electrical Aircraft (MEA) philosophy, there is a growing need for new high-power converters. In this context, innovative solutions to provide high efficiency and power density are required. This paper proposes an unregulated LLC full-bridge operating at resonant frequency to obtain a constant gain at all loads. The first harmonic approximation (FHA) model is not accurate enough to estimate the voltage gain in converters with high parasitic resistance. A modified FHA model is proposed for voltage gain analysis, and time-based models are used to calculate the instantaneous current required for the ZVS transition analysis. A method using charge instead of current is proposed and used for this ZVS analysis. Using this method, an auxiliary circuit is proposed to achieve complete ZVS within the whole load range, avoiding a gapped transformer design and increasing the efficiency and power density. A 28 Vdc output voltage prototype, with 10 kW peak output power, has been developed to validate the theoretical analysis and the proposed auxiliary circuit. The maximum efficiency (96.3%) is achieved at the nominal power of 5 kW.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4849
Author(s):  
Chan Hyeon Park ◽  
Jun Yong Kim ◽  
Shi-Joon Sung ◽  
Dae-Hwan Kim ◽  
Yun Seon Do

In this paper, we propose an optimized structure of thin Cu(In,Ga)Se2 (CIGS) solar cells with a grating aluminum oxide (Al2O3) passivation layer (GAPL) providing nano-sized contact openings in order to improve power conversion efficiency using optoelectrical simulations. Al2O3 is used as a rear surface passivation material to reduce carrier recombination and improve reflectivity at a rear surface for high efficiency in thin CIGS solar cells. To realize high efficiency for thin CIGS solar cells, the optimized structure was designed by manipulating two structural factors: the contact opening width (COW) and the pitch of the GAPL. Compared with an unpassivated thin CIGS solar cell, the efficiency was improved up to 20.38% when the pitch of the GAPL was 7.5–12.5 μm. Furthermore, the efficiency was improved as the COW of the GAPL was decreased. The maximum efficiency value occurred when the COW was 100 nm because of the effective carrier recombination inhibition and high reflectivity of the Al2O3 insulator passivation with local contacts. These results indicate that the designed structure has optimized structural points for high-efficiency thin CIGS solar cells. Therefore, the photovoltaic (PV) generator and sensor designers can achieve the higher performance of photosensitive thin CIGS solar cells by considering these results.


Sign in / Sign up

Export Citation Format

Share Document