scholarly journals Evaluation of the Interplanetary Magnetic Field Strength Using the Cosmic-Ray Shadow of the Sun

2018 ◽  
Vol 120 (3) ◽  
Author(s):  
M. Amenomori ◽  
X. J. Bi ◽  
D. Chen ◽  
T. L. Chen ◽  
W. Y. Chen ◽  
...  
2018 ◽  
Vol 615 ◽  
pp. A98 ◽  
Author(s):  
D. D. Mulcahy ◽  
A. Horneffer ◽  
R. Beck ◽  
M. Krause ◽  
P. Schmidt ◽  
...  

Context. Cosmic rays and magnetic fields play an important role for the formation and dynamics of gaseous halos of galaxies. Aims. Low-frequency radio continuum observations of edge-on galaxies are ideal to study cosmic-ray electrons (CREs) in halos via radio synchrotron emission and to measure magnetic field strengths. Spectral information can be used to test models of CRE propagation. Free–free absorption by ionized gas at low frequencies allows us to investigate the properties of the warm ionized medium in the disk. Methods. We obtained new observations of the edge-on spiral galaxy NGC 891 at 129–163 MHz with the LOw Frequency ARray (LOFAR) and at 13–18 GHz with the Arcminute Microkelvin Imager (AMI) and combine them with recent high-resolution Very Large Array (VLA) observations at 1–2 GHz, enabling us to study the radio continuum emission over two orders of magnitude in frequency. Results. The spectrum of the integrated nonthermal flux density can be fitted by a power law with a spectral steepening towards higher frequencies or by a curved polynomial. Spectral flattening at low frequencies due to free–free absorption is detected in star-forming regions of the disk. The mean magnetic field strength in the halo is 7 ± 2 μG. The scale heights of the nonthermal halo emission at 146 MHz are larger than those at 1.5 GHz everywhere, with a mean ratio of 1.7 ± 0.3, indicating that spectral ageing of CREs is important and that diffusive propagation dominates. The halo scale heights at 146 MHz decrease with increasing magnetic field strengths which is a signature of dominating synchrotron losses of CREs. On the other hand, the spectral index between 146 MHz and 1.5 GHz linearly steepens from the disk to the halo, indicating that advection rather than diffusion is the dominating CRE transport process. This issue calls for refined modelling of CRE propagation. Conclusions. Free–free absorption is probably important at and below about 150 MHz in the disks of edge-on galaxies. To reliably separate the thermal and nonthermal emission components, to investigate spectral steepening due to CRE energy losses, and to measure magnetic field strengths in the disk and halo, wide frequency coverage and high spatial resolution are indispensable.


Galaxies ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 48 ◽  
Author(s):  
Peter L. Biermann ◽  
Philipp P. Kronberg ◽  
Michael L. Allen ◽  
Athina Meli ◽  
Eun-Suk Seo

We propose that the high energy Cosmic Ray particles up to the upturn commonly called the ankle, from around the spectral turn-down commonly called the knee, mostly come from Blue Supergiant star explosions. At the upturn, i.e., the ankle, Cosmic Rays probably switch to another source class, most likely extragalactic sources. To show this we recently compiled a set of Radio Supernova data where we compute the magnetic field, shock speed and shock radius. This list included both Blue and Red Supergiant star explosions; both data show the same magnetic field strength for these two classes of stars despite very different wind densities and velocities. Using particle acceleration theory at shocks, those numbers can be transformed into characteristic ankle and knee energies. Without adjusting any free parameters both of these observed energies are directly indicated by the supernova data. In the next step in the argument, we use the Supernova Remnant data of the starburst galaxy M82. We apply this analysis to Blue Supergiant star explosions: The shock will race to their outer edge with a magnetic field that is observed to follow over several orders of magnitude B ( r ) × r ∼ c o n s t . , with in fact the same magnetic field strength for such stellar explosions in our Galaxy, and other galaxies including M82. The speed is observed to be ∼0.1 c out to about 10 16 cm radius in the plasma wind. The Supernova shock can run through the entire magnetic plasma wind region at full speed all the way out to the wind-shell, which is of order parsec scale in M82. We compare and identify the Cosmic Ray spectrum in other galaxies, in the starburst galaxy M82 and in our Galaxy with each other; we suggest how Blue Supergiant star explosions can provide the Cosmic Ray particles across the knee and up to the ankle energy range. The data from the ISS-CREAM (Cosmic Ray Energetics and Mass Experiment at the International Space Station) mission will test this cosmic ray concept which is reasonably well grounded in two independent radio supernova data sets. The next step in developing our understanding will be to obtain future more accurate Cosmic Ray data near to the knee, and to use unstable isotopes of Cosmic Ray nuclei at high energy to probe the “piston” driving the explosion. We plan to incorporate these data with the physics of the budding black hole which is probably forming in each of these stars.


2004 ◽  
Vol 11 (4) ◽  
pp. 441-445 ◽  
Author(s):  
L. F. Burlaga

Abstract. During 2002, the Voyager 1 spacecraft was in the heliosphere between 83.4 and 85.9AU (1AU is the mean distance from the Sun to Earth) at 34° N heliographic latitude. The magnetic field strength profile observed in this region had a multifractal structure in the range of scales from 2 to 16 days. The multifractal spectrum observed near 85AU is similar to that observed near 40AU, indicating relatively little evolution of the multifractal structure of the magnetic field with increasing distance in the distant heliosphere in the epoch near solar maximum.


Icarus ◽  
2020 ◽  
Vol 335 ◽  
pp. 113392
Author(s):  
Masaki N. Nishino ◽  
Yoshifumi Saito ◽  
Hideo Tsunakawa ◽  
Yuki Harada ◽  
Futoshi Takahashi ◽  
...  

1991 ◽  
Vol 148 ◽  
pp. 101-102
Author(s):  
M.E. Costa ◽  
P. M. McCulloch ◽  
P. A. Hamilton

We have measured a value of 4±5m--2rad for the rotation measure of the radio pulsar PSR0529-66 in the LMC and, after allowing for the dispersion and rotation measures of our Galaxy on the pulsar's line of sight, we deduce that the magnetic field strength in the LMC is in the range 0 to 5μGauss oriented away from the Sun.


1997 ◽  
Vol 166 ◽  
pp. 223-226
Author(s):  
Ramen Kumar Parui

AbstractBased on recent observation of the dominance of the flare generated solar wind streams over the co-rotating streams and a significant lowering in the cosmic ray intensity in the abnormal year of the solar activity period, I have predicted the occurrence of discernible changes in magnetic field strength and the thickness of the shell of the local bubble during high sunspots years of the solar cycle period. In order to observe the variation, both in the magnetic field strength and in the thickness of the compressed shell, a proposal of continuous monitor of these two parameters through the observation of Faraday Rotation Measure has been proposed with an emphasize to the observations in the period of next abnormal year of the solar cycle in near future.


Sign in / Sign up

Export Citation Format

Share Document