heliographic latitude
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 0)

H-INDEX

15
(FIVE YEARS 0)

Author(s):  
Jan Janssens

Aims . Based on the monthly number of polar faculae, a forecast of the amplitude of solar cycle 25 (SC25) is provided, as well as a prediction of the number of solar flares. Methods . Faculae near both solar poles have been visually observed using a commercial off-the-shelf 20 cm Schmidt-Cassegrain telescope since 1995. The monthly averages were corrected for varying seeing conditions and the heliographic latitude of the center of the solar disk B 0 . From the deduced relationship between the smoothed number of monthly polar faculae during the solar cycle minimum, and the subsequent maximum of the monthly sunspot number, a prediction has been made for the amplitude of the next solar cycle. The methodology used can be considered as a precursor technique. The expected number of M- and X-class flares was calculated based on a statistical approach. Results. The maximum of SC25 is predicted to be 118 +/- 29, of similar strength than the previous SC24. Also the number of M5 or stronger flares is expected to be comparable to that of the previous solar cycle.



2020 ◽  
Vol 642 ◽  
pp. A7 ◽  
Author(s):  
J. Rodríguez-Pacheco ◽  
R. F. Wimmer-Schweingruber ◽  
G. M. Mason ◽  
G. C. Ho ◽  
S. Sánchez-Prieto ◽  
...  

After decades of observations of solar energetic particles from space-based observatories, relevant questions on particle injection, transport, and acceleration remain open. To address these scientific topics, accurate measurements of the particle properties in the inner heliosphere are needed. In this paper we describe the Energetic Particle Detector (EPD), an instrument suite that is part of the scientific payload aboard the Solar Orbiter mission. Solar Orbiter will approach the Sun as close as 0.28 au and will provide extra-ecliptic measurements beyond ∼30° heliographic latitude during the later stages of the mission. The EPD will measure electrons, protons, and heavy ions with high temporal resolution over a wide energy range, from suprathermal energies up to several hundreds of megaelectronvolts/nucleons. For this purpose, EPD is composed of four units: the SupraThermal Electrons and Protons (STEP), the Electron Proton Telescope (EPT), the Suprathermal Ion Spectrograph (SIS), and the High-Energy Telescope (HET) plus the Instrument Control Unit that serves as power and data interface with the spacecraft. The low-energy population of electrons and ions will be covered by STEP and EPT, while the high-energy range will be measured by HET. Elemental and isotopic ion composition measurements will be performed by SIS and HET, allowing full particle identification from a few kiloelectronvolts up to several hundreds of megaelectronvolts/nucleons. Angular information will be provided by the separate look directions from different sensor heads, on the ecliptic plane along the Parker spiral magnetic field both forward and backwards, and out of the ecliptic plane observing both northern and southern hemispheres. The unparalleled observations of EPD will provide key insights into long-open and crucial questions about the processes that govern energetic particles in the inner heliosphere.



2020 ◽  
Author(s):  
Justyna M. Sokol

<p><span>Solar wind and EUV flux are dominant ionization factors for the interstellar gas inside the heliosphere. They vary in time with the solar cycle and with heliographic latitude. The modulation of the solar ionizing factors affects the fluxes of interstellar neutral (ISN) gas and energetic neutral atoms (ENAs) on their way from heliospheric boundaries to IBEX in the Earth’s vicinity. IBEX has been measuring ISN gas of hydrogen, helium, neon, and oxygen, as well as hydrogen ENAs since the beginning of the solar cycle 24. Most of the ISN gas species observed by IBEX-Lo are prone to variations in time of the in-ecliptic ionization rates. In case of H ENAs, variations of the out-of-ecliptic solar wind are significant for data interpretation.</span></p><p><span>We present a model of ionization rates based on available observations of the solar wind and the solar EUV flux. We follow methodology discussed by Sokół et al. 2019 </span><span>(ApJ</span><span><span> 872:57)</span></span><span>, however with data selection revised according to recent data releases. We focus on ionization rates for various species in and out of the ecliptic during the decade of IBEX observations. We discuss similarities and differences in the dominant ionization processes, the latitudinal modulation, and the evolution in time. </span></p>





2014 ◽  
Vol 10 (S305) ◽  
pp. 108-113 ◽  
Author(s):  
Sami K. Solanki ◽  
Jose Carlos del Toro Iniesta ◽  
Joachim Woch ◽  
Achim Gandorfer ◽  
Johann Hirzberger ◽  
...  

AbstractThe Solar Orbiter is the next solar physics mission of the European Space Agency, ESA, in collaboration with NASA, with a launch planned in 2018. The spacecraft is designed to approach the Sun to within 0.28 AU at perihelion of a highly eccentric orbit. The proximity with the Sun will also allow its observation at uniformly high resolution at EUV and visible wavelengths. Such observations are central for learning more about the magnetic coupling of the solar atmosphere. At a later phase in the mission the spacecraft will leave the ecliptic and study the enigmatic poles of the Sun from a heliographic latitude of up to 33○.A central instrument of Solar Orbiter} is the Polarimetric and Helioseismic Imager, SO/PHI. It will do full Stokes imaging in the Landé g = 2.5 Fe I 617.3 nm line. It is composed of two telescopes, a full-disk telescope and a high-resolution telescope, that will allow observations at a resolution as high as 200 km on the solar surface. SO/PHI will also be the first solar polarimeter to leave the Sun-Earth line, opening up new possibilities, such as stereoscopic polarimetry (besides stereoscopic imaging of the photosphere and stereoscopic helioseismology). Finally, SO/PHI will have a unique view of the solar poles, allowing not just more precise and exact measurements of the polar field than possible so far, but also enabling us to follow the dynamics of individual magnetic features at high latitudes and to determine solar surface and sub-surface flows right up to the poles.In this paper an introduction to the science goals and the capabilities of SO/PHI will be given, as well as a brief overview of the instrument and of the current status of its development.



2010 ◽  
Vol 6 (S274) ◽  
pp. 204-206
Author(s):  
A. Vecchio ◽  
M. Laurenza ◽  
D. Meduri ◽  
V. Carbone ◽  
M. Storini

AbstractThe spatio-temporal dynamics of the solar magnetic field has been investigated by using NSO/Kitt Peak synoptic magnetic maps covering ~28 yr. For each heliographic latitude the field has been analyzed through the Empirical Mode Decomposition, in order to investigate the time evolution of the various characteristic oscillating frequencies. Preliminary results are discussed.



2009 ◽  
Vol 27 (10) ◽  
pp. 3805-3809 ◽  
Author(s):  
K. D. C. Simunac ◽  
L. M. Kistler ◽  
A. B. Galvin ◽  
M. A. Popecki ◽  
C. J. Farrugia

Abstract. Stream interaction regions (SIRs) that corotate with the Sun (corotating interaction regions, or CIRs) are known to cause recurrent geomagnetic storms. The Earth's L5 Lagrange point, separated from the Earth by 60 degrees in heliographic longitude, is a logical location for a solar wind monitor – nearly all SIRs/CIRs will be observed at L5 several days prior to their arrival at Earth. Because the Sun's heliographic equator is tilted about 7 degrees with respect to the ecliptic plane, the separation in heliographic latitude between L5 and Earth can be more than 5 degrees. In July 2008, during the period of minimal solar activity at the end of solar cycle 23, the two STEREO observatories were separated by about 60 degrees in longitude and more than 4 degrees in heliographic latitude. This time period affords a timely test for the practical application of a solar wind monitor at L5. We compare in situ observations from PLASTIC/AHEAD and PLASTIC/BEHIND, and report on how well the BEHIND data can be used as a forecasting tool for in situ conditions at the AHEAD spacecraft with the assumptions of ideal corotation and minimal source evolution. Preliminary results show the bulk proton parameters (density and bulk speed) are not in quantitative agreement from one observatory to the next, but the qualitative profiles are similar.



2007 ◽  
Vol 25 (8) ◽  
pp. 1913-1927 ◽  
Author(s):  
R. Bruno ◽  
R. D'Amicis ◽  
B. Bavassano ◽  
V. Carbone ◽  
L. Sorriso-Valvo

Abstract. This study focuses on the role that magnetically dominated fluctuations have within the solar wind MHD turbulence. It is well known that, as the wind expands, magnetic energy starts to dominate over kinetic energy but we lack of a statistical study apt to estimate the relevance of these fluctuations depending on wind speed, radial distance from the sun and heliographic latitude. Our results suggest that this kind of fluctuations can be interpreted as non-propagating structures, advected by the wind during its expansion. In particular, observations performed in the ecliptic revealed a clear radial dependence of these magnetic structures within fast wind, but not within slow wind. At short heliocentric distances (~0.3 AU) the turbulent population is largely dominated by Alfvénic fluctuations characterized by high values of normalized cross-helicity and a remarkable level of energy equipartition. However, as the wind expands, a new-born population, characterized by lower values of Alfvénicity and a clear imbalance in favor of magnetic energy becomes visible and clearly distinguishable from the Alfvénic population largely characterized by an outward sense of propagation. We estimate that more than 20% of all the analyzed intervals of hourly scale within fast wind are characterized by normalized cross-helicity close to zero and magnetic energy largely dominating over kinetic energy. Most of these advected magnetic structures result to be non-compressive and might represent the crossing of the border between adjacent flux tubes forming, as suggested in literature, the advected background structure of the interplanetary magnetic field. On the other hand, their features are also well fitted by the Magnetic Field Directional Turnings paradigm as proposed in literature.



2007 ◽  
Vol 660 (1) ◽  
pp. 901-910 ◽  
Author(s):  
Justin C. Kasper ◽  
Michael L. Stevens ◽  
Alan J. Lazarus ◽  
John T. Steinberg ◽  
Keith. W. Ogilvie


2004 ◽  
Vol 11 (4) ◽  
pp. 441-445 ◽  
Author(s):  
L. F. Burlaga

Abstract. During 2002, the Voyager 1 spacecraft was in the heliosphere between 83.4 and 85.9AU (1AU is the mean distance from the Sun to Earth) at 34° N heliographic latitude. The magnetic field strength profile observed in this region had a multifractal structure in the range of scales from 2 to 16 days. The multifractal spectrum observed near 85AU is similar to that observed near 40AU, indicating relatively little evolution of the multifractal structure of the magnetic field with increasing distance in the distant heliosphere in the epoch near solar maximum.



Sign in / Sign up

Export Citation Format

Share Document