scholarly journals Avalanche Interpretation of the Power-Law Energy Spectrum in Three-Dimensional Dense Granular Flow

2019 ◽  
Vol 122 (18) ◽  
Author(s):  
Norihiro Oyama ◽  
Hideyuki Mizuno ◽  
Kuniyasu Saitoh
2018 ◽  
Vol 2018 ◽  
pp. 1-6
Author(s):  
Ziyang Zhao ◽  
Jun Zhang

From the microperspective, this paper presents a model based on a new type of noncontinuous theoretical mechanical method, molecular dynamics (MD), to simulate the typical soil granular flow. The Hertzian friction formula and viscous damping force are introduced in the MD governing equations to model the granular flow. To show the validity of the proposed approach, a benchmark problem of 2D viscous material flow is simulated. The calculated final flow runout distance of the viscous material agrees well with the result of constrained interpolated profile (CIP) method as reported in the literature. Numerical modeling of the propagation of the collapse of three-dimensional axisymmetric sand columns is performed by the application of MD models. Comparison of the MD computational runout distance and the obtained distance by experiment shows a high degree of similarity. This indicates that the proposed MD model can accurately represent the evolution of the granular flow. The model developed may thus find applications in various problems involving dense granular flow and large deformations, such as landslides and debris flow. It provides a means for predicting fluidization characteristics of soil large deformation flow disasters and for identification and design of appropriate protective measures.


Author(s):  
Alessandro Tasora ◽  
Mihai Anitescu

Aiming at the simulation of dense granular flows, we propose and test a numerical method based on successive convex complementarity problems. This approach originates from a multibody description of the granular flow: all the particles are simulated as rigid bodies with arbitrary shapes and frictional contacts. Unlike the discrete element method (DEM), the proposed approach does not require small integration time steps typical of stiff particle interaction; this fact, together with the development of optimized algorithms that can run also on parallel computing architectures, allows an efficient application of the proposed methodology to granular flows with a large number of particles. We present an application to the analysis of the refueling flow in pebble-bed nuclear reactors. Extensive validation of our method against both DEM and physical experiments results indicates that essential collective characteristics of dense granular flow are accurately predicted.


1974 ◽  
Vol 168 (2) ◽  
pp. 379-397 ◽  
Author(s):  
L. J. Gleeson ◽  
M. P. C. Legg ◽  
K. C. Westfold

1973 ◽  
Vol 12 (64) ◽  
pp. 19-44
Author(s):  
Charles F. Raymond

AbstractMethods are developed for determining the distributions of stress and effective viscosity in a glacier, under the assumptions: the ice is quasi-viscous, the flow is time independent, and acceleration forces are negligible. Measurements of the three-dimensional distribution of velocity are needed for their application. The differential equations of mechanical equilibrium, expressed in terms of viscosity, strain-rate components, mean stress, and their gradients, are viewed as equations to be solved for viscosity and mean stress subject to boundary conditions at the free upper surface. For certain rectilinear flow patterns, unique distributions of stress and effective viscosity can always be derived. For more complicated flow this is not necessarily so. However, it is still possible to choose the best values of rheological parameters in any trial flow law based on the requirement that the residuals to the equations of equilibrium be minimized in a mean-square sense. The techniques are applied to measurements of internal deformation made in nine bore holes on the Athabasca Glacier. At the center line the magnitude of the surface-parallel shear stress increases with depth more slowly than would be expected from a standard shape factor correction or the theoretical distribution of Nye. Correspondingly the lateral distribution of lateral shear stress shows the opposite relationships. In the lower one- to two-thirds of the depth corresponding to a range in effective stress from about 0.5 to 1.2 bars, the gross rheology of the ice is not distinguishably different from the experimentally determined flow law of Glen (n = 4.2, T = 0.02° C) as generalized by Nye. The results do not support the conclusion that the effective viscosity is higher than would be expected from Glen’s experiments as indicated by the more limited measurements of Paterson and Savage. Power-law parameters derived for the different bore holes considered separately show a spread, which suggests some rheological inhomogeneity. However, no definite conclusions can be drawn, because of direct measurement errors at the bore holes and less definable uncertainty in the interpolated distribution of velocity between the holes. The upper one- to two-thirds of the glacier constitutes an anomalous zone in which there is either a strong effect from a complex distribution of stress arising from longitudinal stress gradients or more complicated rheology than in a homogeneous power-law material.


2015 ◽  
Vol 1 (4) ◽  
pp. e1400222 ◽  
Author(s):  
Pierre-François Duc ◽  
Michel Savard ◽  
Matei Petrescu ◽  
Bernd Rosenow ◽  
Adrian Del Maestro ◽  
...  

In one of the most celebrated examples of the theory of universal critical phenomena, the phase transition to the superfluid state of 4He belongs to the same three-dimensional (3D) O(2) universality class as the onset of ferromagnetism in a lattice of classical spins with XY symmetry. Below the transition, the superfluid density ρs and superfluid velocity vs increase as a power law of temperature described by a universal critical exponent that is constrained to be identical by scale invariance. As the dimensionality is reduced toward 1D, it is expected that enhanced thermal and quantum fluctuations preclude long-range order, thereby inhibiting superfluidity. We have measured the flow rate of liquid helium and deduced its superfluid velocity in a capillary flow experiment occurring in single 30-nm-long nanopores with radii ranging down from 20 to 3 nm. As the pore size is reduced toward the 1D limit, we observe the following: (i) a suppression of the pressure dependence of the superfluid velocity; (ii) a temperature dependence of vs that surprisingly can be well-fitted by a power law with a single exponent over a broad range of temperatures; and (iii) decreasing critical velocities as a function of decreasing radius for channel sizes below R ≃ 20 nm, in stark contrast with what is observed in micrometer-sized channels. We interpret these deviations from bulk behavior as signaling the crossover to a quasi-1D state, whereby the size of a critical topological defect is cut off by the channel radius.


2012 ◽  
Vol 220 ◽  
pp. 7-14 ◽  
Author(s):  
V. Vidyapati ◽  
M. Kheiripour Langroudi ◽  
J. Sun ◽  
S. Sundaresan ◽  
G.I. Tardos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document