scholarly journals Parity-Violating Møller Scattering at Next-to-Next-to-Leading Order: Closed Fermion Loops

2021 ◽  
Vol 126 (13) ◽  
Author(s):  
Yong Du ◽  
Ayres Freitas ◽  
Hiren H. Patel ◽  
Michael J. Ramsey-Musolf
Author(s):  
David J. Steigmann

This chapter develops two-dimensional membrane theory as a leading order small-thickness approximation to the three-dimensional theory for thin sheets. Applications to axisymmetric equilibria are developed in detail, and applied to describe the phenomenon of bulge propagation in cylinders.


Author(s):  
Fábio Köpp Nóbrega ◽  
Luiz Fernando Mackedanz

Resumo Neste artigo, vamos estudar alguns conceitos fundamentais em física de partículas através do estudo detalhado de um processo específico da Eletrodinâmica Quântica (QED): o espalhamento Bhabha em ordem dominante (Leading Order - LO). Este ocorre na interação entre um elétron e sua antipartícula, o pósitron, sendo um dos processos básicos da QED. Nossa escolha em trabalhar este processo deve-se a riqueza de detalhes proporcionada pelas duas possibilidades (canais) de interação, que servem para ilustrar o cálculo da interferência entre as possibilidades. Além disso, esse processo é utilizado para determinar a luminosidade de um determinado colisor, o que garante maior precisão nas medidas de outras grandezas relevantes para a análise das interações entre partículas. Finalmente, comparamos a predição da QED com os resultados do experimento DESY-PETRA-TASSO.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Paul Frederik Depta ◽  
Andreas Halsch ◽  
Janine Hütig ◽  
Sebastian Mendizabal ◽  
Owe Philipsen

Abstract Thermal leptogenesis, in the framework of the standard model with three additional heavy Majorana neutrinos, provides an attractive scenario to explain the observed baryon asymmetry in the universe. It is based on the out-of-equilibrium decay of Majorana neutrinos in a thermal bath of standard model particles, which in a fully quantum field theoretical formalism is obtained by solving Kadanoff-Baym equations. So far, the leading two-loop contributions from leptons and Higgs particles are included, but not yet gauge corrections. These enter at three-loop level but, in certain kinematical regimes, require a resummation to infinite loop order for a result to leading order in the gauge coupling. In this work, we apply such a resummation to the calculation of the lepton number density. The full result for the simplest “vanilla leptogenesis” scenario is by $$ \mathcal{O} $$ O (1) increased compared to that of quantum Boltzmann equations, and for the first time permits an estimate of all theoretical uncertainties. This step completes the quantum theory of leptogenesis and forms the basis for quantitative evaluations, as well as extensions to other scenarios.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Fabian Müller ◽  
Akaki Rusetsky

Abstract Using non-relativistic effective field theory, we derive a three-particle analog of the Lellouch-Lüscher formula at the leading order. This formula relates the three-particle decay amplitudes in a finite volume with their infinite-volume counterparts and, hence, can be used to study the three-particle decays on the lattice. The generalization of the approach to higher orders is briefly discussed.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
M. Boglione ◽  
A. Simonelli

Abstract Factorizing the cross section for single hadron production in e+e− annihilations is a highly non trivial task when the transverse momentum of the outgoing hadron with respect to the thrust axis is taken into account. We work in a scheme that allows to factorize the e+e−→ H X cross section as a convolution of a calculable hard coefficient and a Transverse Momentum Dependent (TMD) fragmentation function. The result, differential in zh, PT and thrust, will be given to all orders in perturbation theory and explicitly computed to Next to Leading Order (NLO) and Next to Leading Log (NLL) accuracy. The predictions obtained from our computation, applying the simplest and most natural ansatz to model the non-perturbative part of the TMD, are in exceptional agreement with the experimental measurements of the BELLE Collaboration. The factorization scheme we propose relates the TMD parton densities defined in 1-hadron and 2-hadron processes, restoring the possi- bility to perform global phenomenological studies of TMD physics including experimental data from semi-inclusive deep inelastic scattering, Drell-Yan processes, e+e−→ H1H2X and e+e−→ H X annihilations.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Nabamita Banerjee ◽  
Karan Fernandes ◽  
Arpita Mitra

Abstract We study the effect of electromagnetic interactions on the classical soft theorems on an asymptotically AdS background in 4 spacetime dimensions, in the limit of a small cosmological constant or equivalently a large AdS radius l. This identifies 1/l2 perturbative corrections to the known asymptotically flat spacetime leading and subleading soft factors. Our analysis is only valid to leading order in 1/l2. The leading soft factor can be expected to be universal and holds beyond tree level. This allows us to derive a 1/l2 corrected Ward identity, following the known equivalence between large gauge Ward identities and soft theorems in asymptotically flat spacetimes.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Claude Duhr ◽  
Falko Dulat ◽  
Bernhard Mistlberger

Abstract We present the production cross section for a lepton-neutrino pair at the Large Hadron Collider computed at next-to-next-to-next-to-leading order (N3LO) in QCD perturbation theory. We compute the partonic coefficient functions of a virtual W± boson at this order. We then use these analytic functions to study the progression of the perturbative series in different observables. In particular, we investigate the impact of the newly obtained corrections on the inclusive production cross section of W± bosons, as well as on the ratios of the production cross sections for W+, W− and/or a virtual photon. Finally, we present N3LO predictions for the charge asymmetry at the LHC.


Sign in / Sign up

Export Citation Format

Share Document