scholarly journals Negative Spin Polarization and Large Tunneling Magnetoresistance in EpitaxialCo|SrTiO3|CoMagnetic Tunnel Junctions

2005 ◽  
Vol 95 (21) ◽  
Author(s):  
J. P. Velev ◽  
K. D. Belashchenko ◽  
D. A. Stewart ◽  
M. van Schilfgaarde ◽  
S. S. Jaswal ◽  
...  
2008 ◽  
Vol 22 (26) ◽  
pp. 2529-2551 ◽  
Author(s):  
ATHANASIOS N. CHANTIS ◽  
KIRILL D. BELASHCHENKO ◽  
EVGENY Y. TSYMBAL ◽  
INNA V. SUS

In this article we give a review of our recent theoretical studies of the influence of Fe (001) surface (interface) states on spin-polarized electron transport across magnetic tunnel junctions with Fe electrodes. We show that minority-spin surface (interface) states are responsible for at least two effects which are important for spin electronics. First, they can produce a sizable tunneling anisotropic magnetoresistance in magnetic tunnel junctions with a single Fe electrode. The effect is driven by a Rashba shift of the resonant surface band when the magnetization changes direction. This can introduce a new class of spintronic devices, namely, tunneling magnetoresistance junctions with a single ferromagnetic electrode. Second, in Fe/GaAs (001) magnetic tunnel junctions minority-spin interface states produce a strong dependence of the tunneling current spin polarization on applied electrical bias. A dramatic sign reversal within a voltage range of just a few tenths of an eV is predicted. This explains the observed sign reversal of spin polarization in recent experiments of electrical spin injection in Fe/GaAs (001) and related reversal of tunneling magnetoresistance through vertical Fe/GaAs/Fe trilayers.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ding-Fu Shao ◽  
Shu-Hui Zhang ◽  
Ming Li ◽  
Chang-Beom Eom ◽  
Evgeny Y. Tsymbal

AbstractElectric currents carrying a net spin polarization are widely used in spintronics, whereas globally spin-neutral currents are expected to play no role in spin-dependent phenomena. Here we show that, in contrast to this common expectation, spin-independent conductance in compensated antiferromagnets and normal metals can be efficiently exploited in spintronics, provided their magnetic space group symmetry supports a non-spin-degenerate Fermi surface. Due to their momentum-dependent spin polarization, such antiferromagnets can be used as active elements in antiferromagnetic tunnel junctions (AFMTJs) and produce a giant tunneling magnetoresistance (TMR) effect. Using RuO2 as a representative compensated antiferromagnet exhibiting spin-independent conductance along the [001] direction but a non-spin-degenerate Fermi surface, we design a RuO2/TiO2/RuO2 (001) AFMTJ, where a globally spin-neutral charge current is controlled by the relative orientation of the Néel vectors of the two RuO2 electrodes, resulting in the TMR effect as large as ~500%. These results are expanded to normal metals which can be used as a counter electrode in AFMTJs with a single antiferromagnetic layer or other elements in spintronic devices. Our work uncovers an unexplored potential of the materials with no global spin polarization for utilizing them in spintronics.


2021 ◽  
Vol 130 (3) ◽  
pp. 033901
Author(s):  
Dhritiman Bhattacharya ◽  
Peng Sheng ◽  
Md Ahsanul Abeed ◽  
Zhengyang Zhao ◽  
Hongshi Li ◽  
...  

2007 ◽  
Vol 17 (03) ◽  
pp. 593-598 ◽  
Author(s):  
N. N. BELETSKII ◽  
S. A. BORYSENKO ◽  
V. M. YAKOVENKO ◽  
G. P. BERMAN ◽  
S. A. WOLF

The magnetoresistance of Fe/MgO/Fe magnetic tunnel junctions (MTJs) was studied taking into consideration image forces. For MTJs with an MgO insulator, explanations are given of the giant tunneling magnetoresistance (TMR) effect and the effect of the increasing TMR with an increase in MgO insulator thickness. It is demonstrated that the electron current density through MTJs can be high enough to switch the magnetization of a ferromagnetic electrode.


1997 ◽  
Vol 491 ◽  
Author(s):  
Alexander Bratkovsky

ABSTRACTIn the present paper different tunneling mechanisms in conventional and half-metallic ferromagnetic tunnel junctions are analyzed within the same general method. Theoretically calculated direct tunneling in iron group systems leads to about a 30% change in resistance, which is close but lower than experimentally observed values. It is shown that the larger observed values of the TMR might be a result of tunneling involving surface polarized states. We find that tunneling via resonant defect states in the barrier radically decreases the TMR (down to 4% with Fe-based electrodes), and a resonant tunnel diode structure would give a TMR of about 8%. With regards to inelastic tunneling, magnons and phonons exhibit opposite effects: one-magnon emission generally results in spin mixing and, consequently, reduces the TMR, whereas phonons are shown to enhance the TMR. The inclusion of both magnons and phonons reasonably explains an unusual bias dependence of the TMR.The model presented here is applied qualitatively to half-metallics with 100% spin polarization, where one-magnon processes are suppressed and the change in resistance in the absence of spin-mixing on impurities may be arbitrarily large. Even in the case of imperfect magnetic configurations, the resistance change can be a few 1000 percent. Examples of half-metallic systems are CrO2/TiO2 and CrO2/RuO2, and an account of their peculiar band structures is presented. The implications and relation of these systems to CMR materials, which are nearly half-metallic, are discussed.


2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
Walid A. Zein ◽  
Nabil A. Ibrahim ◽  
Adel H. Phillips

Using the effective-mass approximation method, and Floquet theory, we study the spin transport characteristics through a curved quantum nanowire. The spin polarization, P, and the tunneling magnetoresistance, TMR, are deduced under the effect of microwave and infrared radiations of wide range of frequencies. The results show an oscillatory behavior of both the spin polarization and the tunneling magnetoresistance. This is due to Fano-type resonance and the interplay between the strength of spin-orbit coupling and the photons in the subbands of the one-dimensional nanowire. The present results show that this investigation is very important, and the present device might be used to be a sensor for small strain in semiconductor nanostructures and photodetector.


2007 ◽  
Vol 90 (25) ◽  
pp. 252506 ◽  
Author(s):  
Rie Matsumoto ◽  
Akio Fukushima ◽  
Taro Nagahama ◽  
Yoshishige Suzuki ◽  
Koji Ando ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document