scholarly journals Primary damage production in the presence of extended defects and growth of vacancy-type dislocation loops in hcp zirconium

2019 ◽  
Vol 3 (4) ◽  
Author(s):  
Cong Dai ◽  
Fei Long ◽  
Peyman Saidi ◽  
Laurent Karim Béland ◽  
Zhongwen Yao ◽  
...  
2014 ◽  
Vol 455 (1-3) ◽  
pp. 253-257 ◽  
Author(s):  
Farong Wan ◽  
Qian Zhan ◽  
Yi Long ◽  
Shanwu Yang ◽  
Gaowei Zhang ◽  
...  

2007 ◽  
Vol 131-133 ◽  
pp. 225-232 ◽  
Author(s):  
R. Jones

Oxygen precipitation in Si is a complex set of processes which has been studied over many years. Here we review theoretical work relating to the precipitation process. At temperatures around 450°C oxygen atoms become mobile and form a family of thermal double donors. The structure of these defects and the origin of their electrical activity is discussed. At temperature around 650°C these donors disappear and there is a growth of SiO2 precipitates along with rod like defects which are extended defects involving Si interstitials. At higher temperatures these collapse into dislocation loops. The structure and electrical properties of the rod like defect are described and compared with those of dislocations.


2022 ◽  
Vol 71 (1) ◽  
pp. 016102-016102
Author(s):  
Li Ran-Ran ◽  
◽  
Zhang Yi-Fan ◽  
Yin Yu-Peng ◽  
Watanabe Hideo ◽  
...  

1995 ◽  
Vol 64 (3) ◽  
pp. 699-701 ◽  
Author(s):  
Kaoru Mizuno ◽  
Kotaro Ono ◽  
Kazuyoshi Ito ◽  
Takao Kino

2000 ◽  
Vol 610 ◽  
Author(s):  
Alain Claverie ◽  
Filadelfo Cristiano ◽  
Benjamin Colombeau ◽  
Nicholas Cowern

AbstractIn this paper, we discuss the mechanisms by which small clusters evolve through “magic” sizes into {113} defects and then, at sufficiently high dose levels, transform into dislocation loops of two types. This ripening process is mediated by the interchange of free Si(int)s between different extended defects, leading to a decrease of their formation energy. The calculation of the supersaturation of free Si-interstitials in dynamical equilibrium with these defects shows a hierarchy of levels of nonequilibrium diffusion, ranging from supersaturations S of about 106 in the presence of small clusters, through 103 in the presence of {113} defects, to S in the range 100 down to 1 as loops are formed, evolve and finally evaporate. A detailed analysis of defect energetics has been carried out and it is shown that Ostwald ripening is the key concept for understanding and modelling defect interactions during TED of dopants in silicon.


1997 ◽  
Vol 490 ◽  
Author(s):  
P. S. Plekhanov ◽  
U. M. Gösele ◽  
T. Y. Tan

ABSTRACTNucleation of voids and vacancy-type dislocation loops in Si under vacancy supersaturation conditions has been considered. Based upon nucleation barrier calculations, it has been found that voids can be nucleated, but not dislocation loops. The homogeneous nucleation rate of voids has been calculated for different temperatures by assuming different enthalpy values of Si vacancy formation. The process of void growth due to precipitation of vacancies has been numerically simulated. Comparing results of the nucleation and the growth modeling and taking into account the competition between the two processes, the limited time available, and the crystal cooling rate after growth, it has been shown that homogeneous nucleation of voids to experimentally observed densities and void growth to observed sizes is possible if enthalpy of Si vacancy formation is within the range of 2.9 to 3.6 eV with the nucleation temperature in the range of 980–1080 °C.


1996 ◽  
Vol 439 ◽  
Author(s):  
P. Thevenard ◽  
M. Beranger ◽  
B. Canut ◽  
S. M. M. Ramos ◽  
N. Bonardi ◽  
...  

AbstractMgO and LiNbO 3 single crystals were bombarded with GeV swift heavy ions (Pb, Gd) and 30MeV C60 clusters to study the damage production induced by giant electronic processes at stopping power up to 100keV/nm. The defect creation was characterized by optical absorption, transmission electron microscopy (TEM) and Rutherford backscattering spectrometry in channeling geometry (RBS-C). In MgO point defects (F type centers) and extended defects (dislocation loops) were created by ionization processes in addition to those associated with nuclear collisions. The F-center concentration induced by electronic energy excitations was studied at different temperatures and as a function of the particle electronic energy losses. TEM revealed that dislocation loops were produced close to the particle trajectories and amorphization was never observed. On the opposite, in LiNbO3 continuous amorphous tracks were evidenced above a threshold near 5keV/nm. The dependance of this effects with various solid state parameters will be discussed.


1993 ◽  
Vol 319 ◽  
Author(s):  
N. David Theodore ◽  
Gordon Tam ◽  
Jim Whitfield ◽  
Jim Christiansen ◽  
John Steele

AbstractEpitaxial SiGe/Si layers are being extensively investigated for use in base regions of high-speed heterojunction bipolar-transistors (HBTs). Extended defects can be formed in SiGe/Si layers by ion-implantation. Defects, once formed in the layers, can negatively impact electrical performance and also future reliability of the HBTs. The present study investigates the interaction between selective-implant damage and strained SiGe/Si layers of sub-critical thickness. Implant-damage is observed to form dislocation-sources at the edges of implanted regions in SiGe/Si heterolayers. The dislocation sources produce glide dislocation loops. Segments of these loops glide down to SiGe/Si interfaces causing misfit dislocations to arise at interfaces in the heterolayers. Misfitdislocations are formed in directions parallel to and perpendicular to the <110> edge of the implanted region. Dislocations propagate out to a distance of ∼100-150 nm past the edge of the implant in the case of Si0.9Ge0.1/Si layers of sub-critical thickness. The origin and behavior of these defects is discussed.


Sign in / Sign up

Export Citation Format

Share Document